让AI抛弃“小作坊”,拥抱“工业化”:盘古大模型究竟是什么?

2023-10-18 20:30

本文主要是介绍让AI抛弃“小作坊”,拥抱“工业化”:盘古大模型究竟是什么?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果你想要一台冰箱,结果只能买到压缩机,金属面板、塑料储物盒,需要自己进行组装;如果你想要一台汽车,结果拿到一坨橡胶,需要自己从头造轮胎,你将会是什么心情?

目前AI开发的状态与上面举的例子很像。熟悉AI的朋友知道,AI应用开发是碎片化、定制化的,场景稍有变化就要重新进行数据处理,海量参数调优,反复迭代。如果模型达不到期望的目标,还要把这个过程推倒重来,模型开发周期动辄一个月,甚至数月。这种耗费大量人工的方式说明AI开发还处于作坊模式中。

在2021WAIC期间,华为云盘古预训练大模型被评选为大会的“镇馆之宝”,为AI带来了工业化开发新模式。我们不妨就着“镇馆之宝”四个字,来掰扯掰扯盘古大模型究竟是什么,预训练模型又与AI工业化之间存在着怎样的关联。

2018年GPT 和 BERT的横空出世,引发了AI行业内外的共同关注。NLP领域的大规模预训练模型,从逻辑上来解释的话,就是采用自监督学习能力在大规模算力的支持下学习海量参数的数据。这不仅让NLP算法能力有了革命性突破,还将大量原本需要用户完成的训练任务预先完成。打个比方,这就像学校先把各种知识教给学生,让他有了基本的行业常识,而不是等到进入企业之后再从头识字,从而降低了企业的培训成本。

如今,大规模预训练模型已经成为全球主流AI厂商、研究机构的“必备功课”,训练参数与算力投入量也水涨船高。OpenAI在2020年发布的GPT-3已经达到了1750亿参数量、上万GPU的惊人训练规模。可以说,大规模预训练模型既要考验厂商的算法创新、调参与优化能力,又是对数据能力、并行计算能力、网络架构能力、开发工具和能力的全面大考。想要让AI在厂商一侧就变成工业化、标准化的“准完成品”,需要投入的技术实力与产业资源都远超大部分AI产品。

想要“镇”住AI工业化中出现的种种挑战,练就真正能解决问题的AI大模型,需要同时具备高效算法、澎湃算力,海量数据吞吐能力基础。

在2021WAIC开幕式上,华为轮值董事长胡厚崑在演讲中介绍了盘古大模型。他认为当前AI的普及应用的瓶颈首先不在技术上,技术已经有了相当的发展,也不在应用上,因为应用的需求都已经蓬勃而出了。它的瓶颈在于开发的效率上,现在的开发效率太低,AI应用的开发太慢,它严重阻碍了技术和需求的结合。

为了提高AI的开发效率,华为云联合伙伴推出了盘古系列预训练大模型,包括业界首个兼具生成与理解能力的中文语言(NLP)大模型和视觉(CV)大模型。

想要具体感知到华为云盘古大模型的能力,我们到WAIC的展馆中一探究竟。盘古大模型在现场展示了成语填空、阅读理解、快速分类三种能力。甚至连 “明明明明明白白白喜欢他,但他就是不说”这种奇葩句子,盘古大模型也能判断出“白白喜欢谁?”“谁喜欢明明?”等问题。

优质的大模型需要三个核心能力,即:可以吸收海量数据的超大型神经网络、强壮的网络结构、优秀的泛化能力。华为云盘古预训练大模型除此之外,还有哪些独特优势呢?

首先,盘古预训练大模型拥有领先的技术创新。

盘古NLP大模型首次使用Encoder-Decoder架构,兼顾NLP理解与生成的能力,且性能领先;在NLPCC生成任务上,Rouge score取得第一,比第二名提升60% 以上。该架构多任务学习的方法,能够让大模型训练更加稳定;同时基于提示的微调, 能够在小样本学习上超越GPT系列。训练盘古NLP大模型使用了40TB的文本数据,包含了大量的通用知识,同时也沉淀了华为云的许多行业经验。盘古CV大模型在业界首次实现了模型的按需抽取,不同部署场景下抽取出的模型体积差异,动态范围可达三个数量级;提出的基于样本相似度的对比学习,凭借小样本学习能力在ImageNet上取得了业界领先的成绩。

其次,盘古预训练大模型拥有丰富的技术沉淀及应用实践。

盘古预训练大模型已经在多个行业、100多个场景成功验证,包括能源、零售、金融、工业、医疗、环境、物流等等。其中,在能源领域,盘古预训练大模型帮助行业客户实现设备能耗的智能控制,可以节约电力成本50%;在金融行业中的异常财务检测,让模型精度提升20%以上;在尘肺检测中,病例识别准确率提升22%等等。

盘古已经在近百个行业场景中进行了应用,未来,华为云盘古预训练大模型还将上线华为云AI资产共享社区(AI Gallery),将AI能力进一步开放出来。

既名“盘古”,便应该去开辟一些什么。翻过AI工业化的山丘,彼端每一家企业、每一位开发者的心中都应该有一个“盘古”。

这篇关于让AI抛弃“小作坊”,拥抱“工业化”:盘古大模型究竟是什么?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/234974

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费