合成特朗普的西班牙语演讲,新研究实现跨语言语音克隆 | 一周AI最火论文

本文主要是介绍合成特朗普的西班牙语演讲,新研究实现跨语言语音克隆 | 一周AI最火论文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数据文摘专栏作品

作者:Christopher Dossman

编译:conrad、Jiaxu、云舟

 

呜啦啦啦啦啦啦啦大家好,本周的AI Scholar Weekly栏目又和大家见面啦!

 

AI ScholarWeekly是AI领域的学术专栏,致力于为你带来最新潮、最全面、最深度的AI学术概览,一网打尽每周AI学术的前沿资讯。

 

每周更新,做AI科研,每周从这一篇开始就够啦!

 

本周关键词:半监督学习、语音合成、语音克隆、机器人

 

 

本周热门学术研究

 

纳米光子介质在人工神经干涉中的应用

 

本文中,学者们介绍了一种纳米光子神经介质,可以执行相当于人工神经计算的复杂和非线性模式映射。具体而言,他们的工作证明了通过纳米光子介质的光波能够执行人工神经计算,测试集的精度约为84%。

 

许多现有的光学神经计算技术通过利用分层前馈网络遵循数字ANN的架构。但是对于新的纳米光子神经介质(NNM),研究人员表明,通过利用光学反射,可以超越分层前馈网络的范例,以连续和无层的方式实现人工神经计算。

 

复杂信息是输入光的波前编码。该介质转换波前可以实现复杂的计算任务,例如图像识别。在输出端,光能集中在明确定义的位置,例如,可以将其解释为图像中物体的身份。这些计算媒体可以小到几十个波长,并提供超高的计算密度。他们利用亚波长散射体实现复杂的输入/输出映射,超越了传统纳米光子器件的功能。

 

一段时间以来,AI社区一直在寻找减少神经网络训练和推理所需的内存和功耗的方法。与传统方法不同,NNM非常具有前景,因为它的能耗最低。

 

该方法的固有并行性可以显著提高计算速度。结合超高计算密度,NNM方法可用作各种信息设备中的模拟预处理单元。

 

原文:shorturl.at/sJPS4

 

 

 

无监督数据增强(UDA),实现更高效,更连续的半监督学习

 

在最近的一篇论文中,Google AI研究人员证明,数据增强也可以应用于未标记的数据,用来推进半监督学习。他们的方法,即所谓的无监督数据增强或UDA,能够促进模型预测在未标记的样本和增强的未标记样本之间保持一致。

 

在评估方面,UDA取得了出色的成果。例如,在IMDb文本分类数据集中,UDA仅使用20个标记样本实现了4.20的错误率,超过了在25,000个标记样本上训练的传统模型。

 

在标准的半监督学习基准CIFAR-10和SVHN上,UDA优于所有前述方法,CIFAR-10的错误率为2.7%,仅有4,000个样本,SVHN的错误率为2.85%,只有250个样本。

 

 

UDA也适用于像ImageNet这样的大型数据集。当使用标记组的10%进行训练时,UDA将前1/前5精度从55.1/77.3%提高到68.7/88.5%。对于具有130万额外未标记数据的完整ImageNet,UDA进一步将性能从78.3/94.4%提升至79.0/94.5%。

 

这项工作表明,可以应用数据增强来增强半监督学习。对于半监督学习方法的数据稀缺,这一方法非常有效。此外,即使有大规模数据,UDA也能提供强劲的收益。

 

为了避免UDA过度拟合,研究人员提出了一种称为TSA的技术,用于存在大量未标记数据的情况。这种学习已被证明与数据提升相匹配并且令人惊讶地超越了监督学习。

 

代码:

https://github.com/google-research/uda

 

原文:

https://ai.googleblog.com/2019/07/advancing-semi-supervised-learning-with.html

 

 

增强神经网络的泛化

 

Google AI的研究人员建议在网络层使用标准化的边际分配作为推广差距的预测因子。在对边际分布与概括之间的关系进行实证研究后,他们证明了距离的正确归一化和边际分布的一些基本统计可以准确地预测广义差距。

 

研究人员还介绍了深度模型推广(DEMOGEN)数据集,包括756个训练深度模型,以及他们在CIFAR-10和CIFAR-100数据集上的训练和测试性能。这些模型是CNN和ResNet-32的变体,具有不同的流行正则化技术和超参数设置,从而引发了广泛的泛化行为。例如,在CIFAR-10上训练的CNN模型的测试精度范围为60%至90.5%,一般化差距为1%至35%。

这项工作为AI社区提供了一个用于研究泛化的工具。它还鼓励进一步研究隐藏层中的泛化间隙预测器和边缘分布。

 

数据集:

https://github.com/google-research/google-research/tree/master/demogen

 

原文:

https://ai.googleblog.com/2019/07/predicting-generalization-gap-in-deep.html

 

 

多语言语音合成和跨语言语音克隆

 

学者们提出了一种基于Tacotron(中文语音合成)的多人多种语言文本到语音(TTS)的合成算法,能够在多种语言中生成高质量的语音。模型结构采用基于注意力机制的序列到序列模型,根据输入文本序列生成倒谱梅频(log-mel,来自MFCC梅尔频率倒谱系数)图帧序列。

 

 

该模型是通过使用音位输入表示来设计的,以激励跨语言的模型容量共享。它还包含了一个对抗性的损失,以帮助理清它的说话者表示。通过对每种语言的多名使用者进行训练,加入自动编码输入,并在训练期间来帮助稳定注意力,从而进一步扩大了训练规模。

 

该模型对三种语言的高质量语音合成和语音训练的跨语言传输具有重要的应用潜力。例如,不需要任何双语或并行语言的训练,它就能够使用英语使用者的声音合成流利的西班牙语。此外,该模型在学习说外语的同时还会适量调节口音。

 

它可以扩展并利用大量低质的训练数据,来支持更多的使用者和语言。

 

原文:https://arxiv.org/abs/1907.04448

 

机器人物联网的分析、挑战与解决方案

 

机器人物联网(IoRT)是一种新引入的理论,旨在定义机器人在物联网场景中的综合运用。物联网和机器人研究领域的研究现在已经紧密地联系在一起了,不能再分别看待。

它们的紧密联系使两个研究领域走到了一起,研究人员只有合作才能推动这两个领域的进步。本文试图将这两个领域结合在一起,提供了关于互联网机器人的一个概述,分析和挑战,可能的解决方案。该研究探讨了IoRT架构、智能空间集成以及机器人应用等问题。

 

当两个或两个以上的领域紧密联系在一起时,将它们的研究和开发结合起来,并快速推进它们就变得至关重要。机器人和物联网结合的时代已经到来,目的是帮助研究人员共同努力,推动相关理论、模型和应用的发展。

 

它们的综合运用将有助于促进研究,这些研究可用于帮助开发更多更好的应用,例如家庭自动化、卫生健康、交通、物流等。

 

原文:https://arxiv.org/abs/1907.03817

 

 

其他爆款论文

 

英国研究人员发布了一个开源的大型合成点云数据集以帮助研究:

https://arxiv.org/abs/1907.04758

 

回顾现有的三维分类、目标检测和分割的深度学习技术:

https://arxiv.org/abs/1907.04444

 

准确、简单、实时的在线三维多目标跟踪基线系统:

https://arxiv.org/abs/1907.03961

 

一种新的记忆和高效计算的深度学习模型:

https://arxiv.org/abs/1907.03739

 

 

AI新闻

 

一旦谈到需要人工帮助审核内容时,人工智能就显得力不从心了:

https://www.pcmag.com/news/369398/human-help-wanted-why-ai-is-terrible-at-content-moderation

 

AI如何改变商业模式:

https://www.forbes.com/sites/cognitiveworld/2019/07/10/how-artificial-intelligence-is-transforming-business-models/amp/

 

《星际争霸2》玩家现在可以在战网上与DeepMind's 的AI匹配交战了:

https://www.pcmag.com/news/369467/deepminds-ai-to-take-on-human-starcraft-ii-players-on-battl

 

专栏作者介绍

Christopher Dossman是Wonder Technologies的首席数据科学家,在北京生活5年。他是深度学习系统部署方面的专家,在开发新的AI产品方面拥有丰富的经验。除了卓越的工程经验,他还教授了1000名学生了解深度学习基础。

LinkedIn:

https://www.linkedin.com/in/christopherdossman/

 

这篇关于合成特朗普的西班牙语演讲,新研究实现跨语言语音克隆 | 一周AI最火论文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/234801

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur