使用TF-IDF对Tweets做summarization

2023-10-18 17:40

本文主要是介绍使用TF-IDF对Tweets做summarization,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文本自动文摘(automatic summarization/abstracting)是利用计算机自动实现文本分析、内容归纳和摘要自动生成的技术。这项技术在互联网技术迅速发展、海量信息急速膨胀的今天,具有非常重要的用途。Tweets作为社交媒体内容的典型代表,具有极大的研究价值。本文尝试将经典的TF-IDF算法应用到tweets上提取原文中最有代表性的句子做automatic summarization。

写文章不容易,如果这篇文章对你有帮助,请给我的github仓库加个star~
github项目地址

0. 认识数据

本文中使用的tweets数据由以下几个属性组成:

  • id. Twitter API 中下载数据自带的id;
  • topic. 命名实体识别的结果,作为topic使用;
  • sentiment. 情感分析的结果,在本文中没有使用;
  • body. Tweets正文,summarization作用的具体对象;

E.g:

id  topic   sentiment   body
628949369883000832  @microsoft  negative    dear @Microsoft the newOoffice for Mac is grea...

1. 预处理

第一步是句子级的tokenization,因为我们的任务目标是提取句子。
第二步是清理数据。 直观地讲,像URL这样的字符串,“@ …”,标题和标点符号很少有助于句子的重要性。 另外,在大多数的NLP任务中,stopwords通常都会被视为噪音。 这些东西应该被删除。
第三步,为tf-idf计算创建一个遵循原始句子序列的过滤单词列表。

示例预处理输出:

Number of sentences:158
['dear @Microsoft the newOoffice for Mac is great and all, but no Lync update?',"C'mon.","@Microsoft how about you make a system that doesn't eat my friggin discs.",'This is the 2nd time this has happened and I am so sick of it!',"I may be ignorant on this issue but... should we celebrate @Microsoft's "'parental leave changes?']
------------------------------------------------------------------------------------
Number of unique words after filtering:591
[['dear', 'newooffice', 'mac', 'great', 'lync', 'update'],['cmon'],['microsoft', 'make', 'system', 'doesnt', 'eat', 'friggin', 'discs'],['2nd', 'time', 'happened', 'sick'],['may', 'ignorant', 'issue', 'celebrates', 'parental', 'leave', 'changes']]

3. 计算TF-IDF值

数学意义上,tf-idf可以表示为如下公式:
这里写图片描述
在本文中,tf代表经过预处理后的单词x在输入句子中出现的频率,N代表tokenized后的句子总数,df代表包含单词x的句子总数。

算法实现中,我使用textacy,一个基于spaCy的python库。由于我只关心每个句子的有意义的单词,所以我将此技术应用在上一步创建的过滤单词列表上。

def tfidf(data_tokenized):'''Caculate tf-idf matrix.:param data_tokenized: A sequence of tokenized documents, where each document is a sequence of (str) terms.:return: vectorizer, instance of textacy.vsm.Vectorizer.calculate , tf-idf matrix whose row is document, column is term'''vectorizer = Vectorizer(weighting='tfidf')term_matrix = vectorizer.fit_transform(data_tokenized).todense()  # dense matrix means most of the elements are nonzeroreturn vectorizer, term_matrix

正如我在代码注释中提到的,返回term_matrix是一个单词-文档矩阵,也称为“bag-of-words”。 在这种情况下,term_matrix包含158个文档和591个单词,它们与在预处理步骤中创建的过滤后的句子数量和去掉重复词的单词数量相对应。

4. 提取最具代表性的句子作summarization

由于tweet很短,一些广泛使用的技术,如position weights和biased heading weights不适合此任务。在目前阶段,使用每个句子的tf-idf值的总和排序句子。

def rank_sentences(sents, filtered_words, vectorizer, term_matrix, top_n=3):'''Select top n important sentence.:param sents: a list containing sentences.:param filtered_words: a tokenized sentences list whose element is word list:param vectorizer: instance of textacy.vsm.Vectorizer:param term_matrix: tf-idf matrix whose row is document, column is term:param top_n: the selecting number:return: a list containing top n important sentences'''tfidf_sent = [[term_matrix[index, vectorizer.vocabulary[token]] for token in sent] for index, sent inenumerate(filtered_words)]  # Get tfidf value for noun word in each sentencesent_values = [sum(sent) for sent in tfidf_sent]  # Caculate whole tfidf weights for each sentenceranked_sent = sorted(zip(sents, sent_values), key=lambda x: x[1], reverse=True)  # Sort sentence at descending orderreturn [sent[0] for sent in ranked_sent[:top_n]]

示例最终结果输出:

["@eyesonfoxorg @Microsoft I'm still using Vista on one & Win-7 on "'another, Vista is a dinosaur, unfortunately I may use a free 10 with limits','W/ all the $$$ and drones U have working 4 U, maybe U guys could get it ''right the 1st time?',"@Lumia #Lumia @Microsoft 2nd, you guys haven't released a lumia that has a "'QHD screen, or takes video in 2k resolution yet.']

参考文献

  1. Sentence Extraction by tf/idf and Position Weighting from Newspaper Articles
  2. Automatic Summarization
  3. 统计自然语言处理(第2版)

这篇关于使用TF-IDF对Tweets做summarization的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/234161

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左