最优化方法:共轭梯度法(Conjugate Gradient)

2023-10-18 17:30

本文主要是介绍最优化方法:共轭梯度法(Conjugate Gradient),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/pipisorry/article/details/39891197

共轭梯度法(Conjugate Gradient)

共轭梯度法(英语:Conjugate gradient method),是求解数学特定线性方程组的数值解的方法,其中那些矩阵为对称和正定。共轭梯度法是一个迭代方法,它适用于稀疏矩阵线性方程组,因为这些系统对于像Cholesky分解这样的直接方法太大了。这种方程组在数值求解偏微分方程时很常见。共轭梯度法也可以用于求解无约束的最优化问题。

在数值线性代数中,共轭梯度法是一种求解对称正定线性方程组\boldsymbol{Ax}=\boldsymbol{b}的迭代方法。共轭梯度法可以从不同的角度推导而得,包括作为求解最优化问题的共轭方向法的特例,以及作为求解特征值问题的Arnoldi/Lanczos迭代的变种。

双共轭梯度法提供了一种处理非对称矩阵情况的推广。

基础

共轭向量

显然,共轭向量是线性无关向量.

初等变分原理

最速下降算法的有关性质

范数的‖・‖A的定义为‖x‖A=(Ax,x)。

上面定理表明,最速下降法从任何一向量x(0)出发,迭代产生的数列总是收敛到原方程Ax=b的解.而收敛速度的快慢则由A的特征值分布所决定.当A的最小特征值和最大特征值相差很大时λ1<<λn,最速下降法收敛速度很慢,很少用于实际计算.

分析最速下降法收敛较慢的原因,可以发现,负梯度方向从局部来看是二次函数的最快下降方向,但是从整体来看,却并非最好.对于对称正定矩阵A,共轭梯度法考虑选择关于A共轭的向量p1,p2,...代替最速(0)下降法中的负梯度方向,使迭代法对任意给定的初始点x具有有限步收敛性,即经有限步就可以(在理论上)得到问题的准确解.

皮皮blog


共轭梯度算法

计算共轭梯度算法同时构造出关于A共轭的向量pi

求解Ax = b的算法,其中A是实对称正定矩阵。

x 0 := 0
k := 0
r 0 := b-Ax
repeat until r k is "sufficiently small":
k := k + 1
if k = 1
p 1 := r 0
else
p k := r k − 1 + r k − 1 ⊤ r k − 1 r k − 2 ⊤ r k − 2   p k − 1 {\displaystyle p_{k}:=r_{k-1}+{\frac {r_{k-1}^{\top }r_{k-1}}{r_{k-2}^{\top }r_{k-2}}}~p_{k-1}} {\displaystyle p_{k}:=r_{k-1}+{\frac {r_{k-1}^{\top }r_{k-1}}{r_{k-2}^{\top }r_{k-2}}}~p_{k-1}}
end if
α k := r k − 1 ⊤ r k − 1 p k ⊤ A p k {\displaystyle \alpha _{k}:={\frac {r_{k-1}^{\top }r_{k-1}}{p_{k}^{\top }Ap_{k}}}} {\displaystyle \alpha _{k}:={\frac {r_{k-1}^{\top }r_{k-1}}{p_{k}^{\top }Ap_{k}}}}
x k := x k-1 + α k p k
r k := r k-1 - α k A p k
end repeat
结果为 x k
或者


共轭梯度法评价

共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点, 共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。
其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。
下图为共轭梯度法和梯度下降法搜索最优解的路径对比示意图:
注:绿色为梯度下降法,红色代表共轭梯度法


from:http://blog.csdn.net/pipisorry/article/details/39891197

ref: [wiki 共轭梯度法] [wiki 共轭梯度法的推导]

[数值分析 钟尔杰]


转载于:https://my.oschina.net/u/3579120/blog/1508363

这篇关于最优化方法:共轭梯度法(Conjugate Gradient)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/234101

相关文章

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

自定义注解SpringBoot防重复提交AOP方法详解

《自定义注解SpringBoot防重复提交AOP方法详解》该文章描述了一个防止重复提交的流程,通过HttpServletRequest对象获取请求信息,生成唯一标识,使用Redis分布式锁判断请求是否... 目录防重复提交流程引入依赖properties配置自定义注解切面Redis工具类controller

Java调用DeepSeek API的8个高频坑与解决方法

《Java调用DeepSeekAPI的8个高频坑与解决方法》现在大模型开发特别火,DeepSeek因为中文理解好、反应快、还便宜,不少Java开发者都用它,本文整理了最常踩的8个坑,希望对... 目录引言一、坑 1:Token 过期未处理,鉴权异常引发服务中断问题本质典型错误代码解决方案:实现 Token

Nginx 访问控制的多种方法

《Nginx访问控制的多种方法》本文系统介绍了Nginx实现Web访问控制的多种方法,包括IP黑白名单、路径/方法/参数控制、HTTP基本认证、防盗链机制、客户端证书校验、限速限流、地理位置控制等基... 目录一、IP 白名单与黑名单1. 允许/拒绝指定IP2. 全局黑名单二、基于路径、方法、参数的访问控制

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

nginx跨域访问配置的几种方法实现

《nginx跨域访问配置的几种方法实现》本文详细介绍了Nginx跨域配置方法,包括基本配置、只允许指定域名、携带Cookie的跨域、动态设置允许的Origin、支持不同路径的跨域控制、静态资源跨域以及... 目录一、基本跨域配置二、只允许指定域名跨域三、完整示例四、配置后重载 nginx五、注意事项六、支持

MySQL查看表的历史SQL的几种实现方法

《MySQL查看表的历史SQL的几种实现方法》:本文主要介绍多种查看MySQL表历史SQL的方法,包括通用查询日志、慢查询日志、performance_schema、binlog、第三方工具等,并... 目录mysql 查看某张表的历史SQL1.查看MySQL通用查询日志(需提前开启)2.查看慢查询日志3.

MySQL底层文件的查看和修改方法

《MySQL底层文件的查看和修改方法》MySQL底层文件分为文本类(可安全查看/修改)和二进制类(禁止手动操作),以下按「查看方法、修改方法、风险管控三部分详细说明,所有操作均以Linux环境为例,需... 目录引言一、mysql 底层文件的查看方法1. 先定位核心文件路径(基础前提)2. 文本类文件(可直