论文-See, Hear and Read: Deep Aligned Representations

2023-10-18 14:59

本文主要是介绍论文-See, Hear and Read: Deep Aligned Representations,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

See, Hear and Read: Deep Aligned Representations

  

本paper提出了可以在三种自然模态(视觉,声音,语言)下进行学习的深度判断特征表达,使用Deep Conv Network来进行对齐式的表达学习。

 

本paper使用的dataset:

 

Cross-Modal Network

目标是对image X 和sound Y学习其对齐之后的representation。

 

Learning Aligned Representation的结构:

 

为了让不同模态之间的representation进行对齐,在网络较上层的layer进行共享参数。这样的好处是让类内部的representation进行跨模态的融合。

Student-teacher模型在transfer learning上使用。在本paper中,不使用aligned representation,而是让learned parameters进行共享。

 

 

 

Alignment by Model Transfer

给定一个 teacher 模态 g(x), 比如让AlexNet成为image classification model,在给定另一个模态的data时,对f(x) 进行训练。

使用KL-divergence作为loss:

 

Alignment by Ranking

对于ranking loss function,采用有着对齐和判别属性的表达式:

 

其中△是边缘大小的超参数。

 

Learning

其中 model transfer loss 来源于最后一层的output layer,ranking loss 来源于所有的共享layers。最后的objective loss 是两者的总和。

 

Network Architecture

网络有三层不同的输入层,取决于数据的不同模态。其中网络的disjoint pathway对不同的模态的data进行feature extraction,然后在shared layers中拟合成modal-robust features。

 

Sound Network

因为sound是一维的信号,本paper使用四层的卷积网络将spectrogram转换成high-level的representation,

Text Network

使用word2vec将sentences转换为word representation,使用一个四层的deep one-dimensional Convolutional Network 来提取特征

Vision Network

使用标准的Krizhevsky architecture,提取pool5的特征经过flatten作为特征

Shared Network

来自sound,text,和vision的feature都有着固定长度相同维度的vector,

 

 

对比结果:

总结:

将data经过不同的特征转化网络,在shared layer里面将相同label的特征统一扭曲到可分的空间中。

 

转载于:https://www.cnblogs.com/zhang-yd/p/7838024.html

这篇关于论文-See, Hear and Read: Deep Aligned Representations的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/233302

相关文章

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

vue 父组件调用子组件的方法报错,“TypeError: Cannot read property ‘subDialogRef‘ of undefined“

vue 父组件调用子组件的方法报错,“TypeError: Cannot read property ‘subDialogRef’ of undefined” 最近用vue做的一个界面,引入了一个子组件,在父组件中调用子组件的方法时,报错提示: [Vue warn]: Error in v-on handler: “TypeError: Cannot read property ‘methods

[轻笔记] pip install : Read timed out. (closed)

添加超时参数(单位秒) pip --default-timeout=10000 install ${package_name}