全面超越AutoGPT,面壁智能联合清华NLP实验室开源大模型「超级英雄」XAgent

本文主要是介绍全面超越AutoGPT,面壁智能联合清华NLP实验室开源大模型「超级英雄」XAgent,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近日,国内领先的人工智能大模型公司面壁智能又放大招,联合清华大学 NLP 实验室共同研发并推出大模型「超级英雄」——XAgent。

通过任务测试,XAgent 在真实复杂任务的处理能力已全面超越 AutoGPT。

XAgent 在真实复杂任务处理中全面超越 AutoGPT

现已在 GitHub 正式开源,地址 https://github.com/OpenBMB/XAgent

案例展示地址:https://x-agent.net/

博客地址:https://blog.x-agent.net

XAgent 何许「人」也?

在这里插入图片描述

XAgent 是一个可以实现自主解决复杂任务的全新 AI 智能体,以 LLM 为核心,能够理解人类指令、制定复杂计划并自主采取行动。

传统智能体通常受到人类定制规则的限制,只能在限定范围内解决问题。它们更像是为人类所用的「工具」,而不是真正的「自主智能体」,难以自主解决复杂问题。

相反,XAgent 被赋予了自主规划和决策的能力,使它能够独立运行,发现新的策略和解决方案,不受人类预设的束缚。

它的能力已全面超越 AutoGPT,在众多场景任务上展示出了惊人的自主性和复杂任务的求解能力,将 AI 智能体的智能水平提升到了一个全新高度。

那么问题又来了:它是如何实现的呢?

「左右脑」协同,双循环机制

正如人类具备「左脑」 和「右脑」,在处理复杂任务时通常从「 宏观」和「微观」 两个视角进行考虑,既要针对全局进行统筹和规划,也要从执行层面来考量。

在这里插入图片描述

相较于 AutoGPT,面壁智能和清华大学在 XAgent 的设计中创新地引入了一种「双循环机制」:

  • 外循环:负责全局任务规划,将复杂任务分解为可操作的简单任务。

  • 内循环:负责局部任务执行,专注于细节。

通过双循环机制的协作,XAgent 如同大模型领域的「超级英雄」,它在应对复杂任务的不同环节时,展现出超强的专业度和丰富的技能。

就像漫威宇宙中的「美队」,XAgent 既有全局观的领导力,也有细致入微的执行力。

在外循环中,XAgent 展现出作为一个「规划」(PlanAgent)的领导力,它会把复杂任务拆分成若干简单任务,并监督问题解决的完整过程。

首先,它将给定的复杂任务分解成更小、更易管理的「子任务」,生成「初始规划」,形成任务序列。

随后,它将逐次把每个子任务传递给内循环解决。在这个过程中,外循环会不断监督任务的进度和状态,并根据反馈对后续规划进行「迭代优化」。

在内循环中,XAgent 快速转变身份,展现出作为一个高效「执行者」(ToolAgent)的专业度,确保外循环传递的子任务达到预期。

根据子任务性质的不同,它可以从外部系统中检索工具,并针对子任务进行一步步求解。

在子任务完成后,它将生成当前子任务执行过程的反思,反馈给外循环,指示当前任务是否完成,以及任务执行中的潜在优化点。

如图所示,用户给 XAgent 提交了 iris.zip 文件,让 XAgent 对数据进行分析。

在这里插入图片描述

可以看到,XAgent 首先通过外循环将这个任务分解成了 4 个子任务:

  1. 对数据进行检查与理解;

  2. 检查系统的 Python 环境,查看相关数据分析库是否存在;

  3. 编写数据分析代码,对数据进行处理与分析;

  4. 根据 python 代码执行结果撰写分析报告。

随后,在执行每一个子任务时,XAgent 通过内循环熟练地使用文件读写、 shell 命令、python notebook 及相应 pandas、sci-kit learn、seaborn、matplotlib 等数据分析库,甚至会对数据进行可视化分析。

在这里插入图片描述

在这里插入图片描述

AutoGPT 在执行相同任务时,并没有制定检查 python 环境与相关库的规划,而是直接开始写代码执行,导致使用相关库时失败报错,最终也没有完成对数据的复杂分析。

人机协作:智能体交互新范式

虽然 AutoGPT 在一定程度上突破了传统 GPT 模型的局限性,但它仍然存在死循环、错误调用等执行出错的现象,需要人工干预才能解决。

而 XAgent 在设计之初就针对相关问题进行了考量,并引入了专为增强人机协作的交互机制:它可以自主与用户进行交互,并向人类发出干预和指导的请求。

对于一个智能体而言,「是否能够与人类协作」也是体现其智能程度的重要指标。

首先,XAgent 具备直观的界面,用户可以直接覆盖或修改它提出的建议,从而将 AI 效率与人类的直觉和专业知识有效结合。

其次,在面临陌生挑战的情况下,XAgent 具备「向人类寻求帮助」能力,它会向用户征求实时反馈、建议或指导,确保即使在不确定的领域,智能体也能发挥出最佳作用。
在这里插入图片描述

这种交互范式,将 AI 的自主性与人类的智慧有机融合,展示了人与 XAgent 之间的全新的协作关系。

如图所示,用户想让 XAgent 帮忙推荐一些好吃的餐馆来和朋友聚会,但是却没有提供具体详细的信息。

这个时候 XAgent 可以意识到目前用户所提供的信息不够充足,难以进行推荐,于是向人类提出请求,询问用户的倾向地点、预算范围、口味喜好、有哪些忌口等等,在得到用户的反馈后从而提供了推荐的餐厅。

而 AutoGPT 则直接开始到网络上搜索餐馆信息进行推荐,最终推荐的结果地点不对,也没有考虑用户的预算,没有符合用户的需求。

高效通信语言,超强工具调用

无论「双循环」的运转机制,还是「人机协作」 的交互能力,在 XAgent 的总体设计中,面壁智能和清华团队着重考虑的是智能体的稳定、高效和安全等核心特性。

而结构化的通信方式同样是建立强大、稳定智能体的重要因素之一。

XAgent 采用 Function Call 作为其内部的通信语言,具备结构化、标准化、统一化等优势。

  • 结构化:Function Call 具备清晰且严谨的格式,可以明确表述所需内容,从而最小化了潜在的错误。

  • 标准化:Function Call 可以将与外部工具的交互过程标准化,提供一种通用语言,使智能体具备使用和整合多种工具的能力,解决复杂任务。

  • 统一化:通过将信息摘要、任务规划、工具执行等所有环节转化为特定的 Function Call 形式,确保每个环节均以统一的方式进行处理,从而简化系统设计。

此外,工具调用也是评价 AI Agent 是否具备解决复杂问题的重要能力之一。

XAgent 在设计中原创了工具执行引擎 ToolServer,可以实现更安全、高效、可扩展的工具执行能力。

它在隔离的 Docker 环境中运行,确保工具执行不会危及主系统的稳定性或安全性。

这种设计带来多重好处:

  • 安全:在 Docker 容器内运行工具可以保护主系统免受潜在危害。

  • 高效:系统可以根据需求和使用模式启动、停止和重启节点,实现最佳资源使用。

  • 可扩展:方便管理代码,调试和扩展性更强。

ToolServer 的关键组件包括:ToolServerNode、ToolServerMonitor、ToolServerManager,在执行操作、节点检查、周期管理等方面提供强大的能力。

目前,XAgent 的 ToolSever 支持 FileSystemEnv、PythonNotoBook、WebEnv、ExecuteShell、RapidAPIEnv、AskHumanforHelp 等多种工具。

XAgent 不仅可以帮我们做一些简单的任务,它甚至可以帮助我们训练模型。

比如,用户希望能够对电影评论进行分析,判断一下大众对电影评价的好坏。这个时候 XAgent 会首先下载 imdb 数据集去训练一个 BERT 模型,并使用训练好的 BERT 模型对电影评论进行预测。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

释放大模型潜力,全面超越 AutoGPT

经过在一系列任务中的测试可以看到(如下图 a、b 所示),基于 GPT-4 的 XAgent 表现效果在所有基准测试中都超过了原始的 GPT-4,并全面超越了 AutoGPT。

这些任务需要 Agent 推理规划和使用外部工具的能力,包括:用搜索引擎回答问题的能力(FreshQA+HotpotQA)、Python 编程能力(MBPP)、数学推理能力(MATH)、交互式编程能力(InterCode)、具身推理能力(ALFWorld)、真实复杂任务等。

图片图 a:XAgent 在真实复杂任务处理中全面超越 AutoGPT

图片图 b:超越 AutoGPTXAgent 在六大 AI Agent 基准测试中全面领先 GPT-4

可以看出,XAgent 的系统设计能够充分释放 GPT-4 的基础能力,并达到极高的测试效果和人类倾向(Human Preference)。

这不仅表明 XAgent 在需要推理规划的传统 AI 测试中表现出色,而且在处理复杂的实际指令时具有更高的性能

拓展应用边界,坚实技术基础

AI Agent 的出现让整个行业看到了大模型技术的重要落地方向,无需进行复杂的 prompt 探索,就可以实现整套工作流的任务执行。

作为具有无限潜能的大模型「超级英雄」,XAgent 可以成为每一个普通的人的「个人助理」。它可以帮助我们规划日程,安排行程,管理生活和工作的时间和资源分配。

它还可以自主使用多种数据采集、处理和分析工具,全自动地完成对海量数据的分析并形成报告,帮助用户高效获取重要信息。

此外,XAgent 还能结合外部工具与自主规划算法,根据环境信息做出决策,以实现更高效和精确的任务执行。

XAgent 的研发团队是由来自面壁智能和清华大学 THUNLP 实验室的多位大模型领域的专家和学者组建。他们更像是大模型领域的「超级英雄」。

这一创新成果之所以能够成功推出,正是团队在长期的科研工作过程中构建了一系列前沿创新的大模型 Infra,坚实技术基础,拓展创新和研发的边界。

面壁智能联合清华大学 NLP 实验室、OpenBMB 开源社区打造了一个「三位一体」 的大模型产学研生态布局,提出并发布了多个大模型工具使用框架和引擎:

  • Tool Learning:大模型工具学习范式,将专业工具与大模型的优势相融合,从而在问题解决方面达到更高的准确性、效率和自主性。

  • BMTools:大模型学习引擎,是让语言模型使用扩展工具的开源仓库,同时也是开源社区构建和共享工具平台。

  • ToolLLM,大模型工具学习框架,给大模型接入 16000+ 真实 API,让大模型可以通过调用外部工具以完成更复杂的用户指令任务。

  • WebCPM,中文领域首个支持联网搜索的模型框架,填补国产大模型该领域的空白,让大模型能像人类一样在网页上实时搜索答案,提高了 AIGC 的实时性和准确性。

XAgent 拓展了 AI 智能体在执行复杂任务中的能力上限,让我们看到大模型技术融入生产和生活的前沿趋势和无限潜力。

这篇关于全面超越AutoGPT,面壁智能联合清华NLP实验室开源大模型「超级英雄」XAgent的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/230768

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言