[推荐]memcached全面剖析–4. memcached的分布式算法:Consistent Hashing

本文主要是介绍[推荐]memcached全面剖析–4. memcached的分布式算法:Consistent Hashing,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关键字: memcached分布式, consistent hashing

第2次第3次 由前坂介绍了memcached的内部情况。本次不再介绍memcached的内部结构,开始介绍memcached的分布式。

 

  • memcached的分布式
    • memcached的分布式是什么意思?
  • Cache::Memcached的分布式方法
    • 根据余数计算分散
    • 根据余数计算分散的缺点
  • Consistent Hashing
    • Consistent Hashing的简单说明
    • 支持Consistent Hashing的函数库
  • 总结

memcached的分布式

正如第1次 中介绍的那样, memcached虽然称为“分布式”缓存服务器,但服务器端并没有“分布式”功能。服务器端仅包括 第2次第3次 前坂介绍的内存存储功能,其实现非常简单。至于memcached的分布式,则是完全由客户端程序库实现的。这种分布式是memcached的最大特点。

memcached的分布式是什么意思?

这里多次使用了“分布式”这个词,但并未做详细解释。现在开始简单地介绍一下其原理,各个客户端的实现基本相同。

下面假设memcached服务器有node1~node3三台,应用程序要保存键名为“tokyo”“kanagawa”“chiba”“saitama”“gunma” 的数据。

memcached-0004-01.png

图1 分布式简介:准备

首先向memcached中添加“tokyo”。将“tokyo”传给客户端程序库后,客户端实现的算法就会根据“键”来决定保存数据的memcached服务器。服务器选定后,即命令它保存“tokyo”及其值。

memcached-0004-02.png

图2 分布式简介:添加时

同样,“kanagawa”“chiba”“saitama”“gunma”都是先选择服务器再保存。

接下来获取保存的数据。获取时也要将要获取的键“tokyo”传递给函数库。函数库通过与数据保存时相同的算法,根据“键”选择服务器。使用的算法相同,就能选中与保存时相同的服务器,然后发送get命令。只要数据没有因为某些原因被删除,就能获得保存的值。

memcached-0004-03.png

图3 分布式简介:获取时

这样,将不同的键保存到不同的服务器上,就实现了memcached的分布式。 memcached服务器增多后,键就会分散,即使一台memcached服务器发生故障无法连接,也不会影响其他的缓存,系统依然能继续运行。

接下来介绍第1次 中提到的Perl客户端函数库Cache::Memcached实现的分布式方法。

Cache::Memcached的分布式方法

Perl的memcached客户端函数库Cache::Memcached是 memcached的作者Brad Fitzpatrick的作品,可以说是原装的函数库了。

  • Cache::Memcached - search.cpan.org

该函数库实现了分布式功能,是memcached标准的分布式方法。

根据余数计算分散

Cache::Memcached的分布式方法简单来说,就是“根据服务器台数的余数进行分散”。求得键的整数哈希值,再除以服务器台数,根据其余数来选择服务器。

下面将Cache::Memcached简化成以下的Perl脚本来进行说明。

use strict;
use warnings;
use String::CRC32;my @nodes = ('node1','node2','node3');
my @keys = ('tokyo', 'kanagawa', 'chiba', 'saitama', 'gunma');foreach my $key (@keys) {my $crc = crc32($key);             # CRC値my $mod = $crc % ( $#nodes + 1 );my $server = $nodes[ $mod ];       # 根据余数选择服务器printf "%s => %s\n", $key, $server;
}

Cache::Memcached在求哈希值时使用了CRC。

  • String::CRC32 - search.cpan.org

首先求得字符串的CRC值,根据该值除以服务器节点数目得到的余数决定服务器。上面的代码执行后输入以下结果:

tokyo       => node2
kanagawa => node3
chiba       => node2
saitama   => node1
gunma     => node1

根据该结果,“tokyo”分散到node2,“kanagawa”分散到node3等。多说一句,当选择的服务器无法连接时,Cache::Memcached会将连接次数添加到键之后,再次计算哈希值并尝试连接。这个动作称为rehash。不希望rehash时可以在生成Cache::Memcached对象时指定“rehash => 0”选项。

根据余数计算分散的缺点

余数计算的方法简单,数据的分散性也相当优秀,但也有其缺点。那就是当添加或移除服务器时,缓存重组的代价相当巨大。添加服务器后,余数就会产生巨变,这样就无法获取与保存时相同的服务器,从而影响缓存的命中率。用Perl写段代码来验证其代价。

use strict;
use warnings;
use String::CRC32;my @nodes = @ARGV;
my @keys = ('a'..'z');
my %nodes;foreach my $key ( @keys ) {my $hash = crc32($key);my $mod = $hash % ( $#nodes + 1 );my $server = $nodes[ $mod ];push @{ $nodes{ $server } }, $key;
}foreach my $node ( sort keys %nodes ) {printf "%s: %s\n", $node,  join ",", @{ $nodes{$node} };
}

这段Perl脚本演示了将“a”到“z”的键保存到memcached并访问的情况。将其保存为mod.pl并执行。

首先,当服务器只有三台时:

$ mod.pl node1 node2 nod3
node1: a,c,d,e,h,j,n,u,w,x
node2: g,i,k,l,p,r,s,y
node3: b,f,m,o,q,t,v,z

结果如上,node1保存a、c、d、e……,node2保存g、i、k……,每台服务器都保存了8个到10个数据。

接下来增加一台memcached服务器。

$ mod.pl node1 node2 node3 node4
node1: d,f,m,o,t,v
node2: b,i,k,p,r,y
node3: e,g,l,n,u,w
node4: a,c,h,j,q,s,x,z

添加了node4。可见,只有d、i、k、p、r、y命中了。像这样,添加节点后键分散到的服务器会发生巨大变化。26个键中只有六个在访问原来的服务器,其他的全都移到了其他服务器。命中率降低到23%。在Web应用程序中使用memcached时,在添加memcached服务器的瞬间缓存效率会大幅度下降,负载会集中到数据库服务器上,有可能会发生无法提供正常服务的情况。

mixi的Web应用程序运用中也有这个问题,导致无法添加memcached服务器。但由于使用了新的分布式方法,现在可以轻而易举地添加memcached服务器了。这种分布式方法称为 Consistent Hashing。

Consistent Hashing

关于Consistent Hashing的思想,mixi株式会社的开发blog等许多地方都介绍过,这里只简单地说明一下。

  • mixi Engineers' Blog - スマートな分散で快適キャッシュライフ
  • ConsistentHashing - コンシステント ハッシュ法

Consistent Hashing的简单说明

Consistent Hashing如下所示:首先求出memcached服务器(节点)的哈希值,并将其配置到0~232 的圆(continuum)上。然后用同样的方法求出存储数据的键的哈希值,并映射到圆上。然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器上。如果超过232 仍然找不到服务器,就会保存到第一台memcached服务器上。

memcached-0004-04.png

图4 Consistent Hashing:基本原理

从上图的状态中添加一台memcached服务器。余数分布式算法由于保存键的服务器会发生巨大变化而影响缓存的命中率,但Consistent Hashing中,只有在continuum上增加服务器的地点逆时针方向的第一台服务器上的键会受到影响。

memcached-0004-05.png

图5 Consistent Hashing:添加服务器

因此,Consistent Hashing最大限度地抑制了键的重新分布。而且,有的Consistent Hashing的实现方法还采用了虚拟节点的思想。使用一般的hash函数的话,服务器的映射地点的分布非常不均匀。因此,使用虚拟节点的思想,为每个物理节点(服务器)在continuum上分配100~200个点。这样就能抑制分布不均匀,最大限度地减小服务器增减时的缓存重新分布。

通过下文中介绍的使用Consistent Hashing算法的memcached客户端函数库进行测试的结果是,由服务器台数(n)和增加的服务器台数(m)计算增加服务器后的命中率计算公式如下:

(1 - n/(n+m)) * 100

支持Consistent Hashing的函数库

本连载中多次介绍的Cache::Memcached虽然不支持Consistent Hashing,但已有几个客户端函数库支持了这种新的分布式算法。第一个支持Consistent Hashing和虚拟节点的memcached客户端函数库是名为libketama的PHP库,由last.fm开发。

  • libketama - a consistent hashing algo for memcache clients – RJ ブログ - Users at Last.fm

至于Perl客户端,连载的第1次 中介绍过的Cache::Memcached::Fast和Cache::Memcached::libmemcached支持 Consistent Hashing。

  • Cache::Memcached::Fast - search.cpan.org
  • Cache::Memcached::libmemcached - search.cpan.org

两者的接口都与Cache::Memcached几乎相同,如果正在使用Cache::Memcached,那么就可以方便地替换过来。Cache::Memcached::Fast重新实现了libketama,使用Consistent Hashing创建对象时可以指定ketama_points选项。

my $memcached = Cache::Memcached::Fast->new({servers => ["192.168.0.1:11211","192.168.0.2:11211"],ketama_points => 150
});

另外,Cache::Memcached::libmemcached 是一个使用了Brain Aker开发的C函数库libmemcached的Perl模块。 libmemcached本身支持几种分布式算法,也支持Consistent Hashing,其Perl绑定也支持Consistent Hashing。

  • Tangent Software: libmemcached

总结

本次介绍了memcached的分布式算法,主要有memcached的分布式是由客户端函数库实现,以及高效率地分散数据的Consistent Hashing算法。下次将介绍mixi在memcached应用方面的一些经验,和相关的兼容应用程序。

这篇关于[推荐]memcached全面剖析–4. memcached的分布式算法:Consistent Hashing的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/230119

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Redis分布式锁使用及说明

《Redis分布式锁使用及说明》本文总结了Redis和Zookeeper在高可用性和高一致性场景下的应用,并详细介绍了Redis的分布式锁实现方式,包括使用Lua脚本和续期机制,最后,提到了RedLo... 目录Redis分布式锁加锁方式怎么会解错锁?举个小案例吧解锁方式续期总结Redis分布式锁如果追求

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

Java子线程无法获取Attributes的解决方法(最新推荐)

《Java子线程无法获取Attributes的解决方法(最新推荐)》在Java多线程编程中,子线程无法直接获取主线程设置的Attributes是一个常见问题,本文探讨了这一问题的原因,并提供了两种解决... 目录一、问题原因二、解决方案1. 直接传递数据2. 使用ThreadLocal(适用于线程独立数据)

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系