新一代开源语音库CoQui TTS冲到了GitHub 20.5k Star

2023-10-18 01:36

本文主要是介绍新一代开源语音库CoQui TTS冲到了GitHub 20.5k Star,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Coqui TTS 项目介绍

Coqui 文本转语音(Text-to-Speech,TTS)是新一代基于深度学习的低资源零样本文本转语音模型,具有合成多种语言语音的能力。该模型能够利用共同学习技术,从各语言的训练资料集转换知识,来有效降低需要的训练资料量。

这个模型库现在已经在GitHub上开源,并有高达 20.5K+ 的star量。似乎和以前讲过的Mozilla 的 TTS 有着千丝万缕的联系,但是如今Mozilla TTS 已经停止更新,而 Coqui TTS 更新稳定,是目前少数几个更新比较稳定的开源语音库。

coqui官网:https://coqui.ai/

开源地址:https://github.com/coqui-ai/TTS/

在这里插入图片描述

Arm架构离线安装 coqui TTS

要在 ARM 架构的设备上离线安装 Coqui TTS,可以按照以下步骤进行操作:

  1. 1. 安装必要的依赖项:Python 3PipGit.

2.克隆CoquiTTS 的Git 仓库.

git clone https://github.com/coqui-ai/TTS

3.安装所需的Python包.

pip install -r requirements.txt

4.下载所需的语音模型和配置文件,并将其放在IIS/tts/mode1s 目录下.可以从 CoquiTTS 的GitHub 页面上下载这些文件.

5.运行测试脚本来验证安装是否成功.

python demo_cli .py

注意,由于 ARM 架构的设备通常性能较低,因此可能需要更长时间才能完成编译和训练等操作。此外,如果您希望在 ARM 架构的设备 上进行 TTS 实时推理,则可能需要使用较小的模型或调整一些模型参数以提高性能。

python 命令行安装及使用

1.安装

pip install tts

注意 TTS 是依赖 torch 的,由于 torch 庞大的体积,所以可能是要等很久。但是我这里由于环境问题,只能用特定版本的 torch,否则用不了 GPU。

2.安装完成后测试

tts --list_models

输出模型的信息,说明OK

Name format: type/language/dataset/model1: tts_models/multilingual/multi-dataset/your_tts2: tts_models/en/ek1/tacotron2....

查看模型信息

tts --model_info_by_name tts_models/tr/common-voice/glow-tts
> model type : tts_models
> language supported : tr
> dataset used : common-voice
> model name : glow-tts
> description : Turkish GlowTTS model using an unknown speaker from the Common-Voice dataset.
> default_vocoder : vocoder_models/tr/common-voice/hifigan

文本生成语音

tts --text "text for TTS" --out_path ./test_speech.wav
100%|████████████████████████████                                                                                                                                                    █████████████████████████████████                                                                                                                                                          █████████████████████████████████                                                                                                                                                          █████████████████████████████████                                                                                                                                                          ████████████████████| 113M/113M [                                                                                                                                                          05:58<00:00, 315kiB/s]
> Model's license - apache 2.0
> Check https://choosealicense.c                                                                                                                                                          om/licenses/apache-2.0/ for more                                                                                                                                                           info.
> Downloading model to /root/.lo                                                                                                                                                          cal/share/tts/vocoder_models--en-                                                                                                                                                          -ljspeech--hifigan_v2
100%|█| 3.80M/3.80M [00:01<00:00,
> Model's license - apache 2.0
......
Removing weight norm...
> Text: text for TTS
> Text splitted to sentences.
['text for TTS']
> Processing time: 0.78575992584                                                                                                                                                          22852
> Real-time factor: 0.4602105388                                                                                                                                                          021246
> Saving output to ./test_speech                                                                                                                                                          .wav

离线安装TTS

以下是在Linux系统上离线安装CoquiTTS的步骤:

1.下载CoquiTTS的代码.

git clone https://github.com/coqui-ai/TTS

2.安装依赖项.

sudo apt-get install python3-pip libsndfile1
pip3 install -r requirements.txt

3.下载所需的模型,例如英文的Tacotron2模型.

wget https://github.com/coqui-ai/TTS/releases/download/tts_models/tts_models_tacotron2_anon.tar.bz2
tar xvf tts_models_tacotron2_anon.tar.bz2

4.设置环境变量.

export PYTHONPATH=$PYTHONPATH: /path/to/TTS

5.启动TTS服务器.

python3 server.py --model_path /path/to/tacotron2 --config_path /path/to/tacotron2/config.json --port 8000

其中/path/to/tacotron2 为第3步中下载的Tacotron2模型的路径,/path/to/tacotron2/config. json 为Tacotron2模型的配置文件的路径。

6.连接到TTS服务器并进行语音合成.

import requests
import ison
r = requests.post('http://localhost:8000/api/tts', data=json.dumps({"text": "hello", "model_name": "ntacotron2"}
))
with open ("output .wav", "wb") as f:f.write(r.content)

这将生成一个名为 output .wav 的WAV文件,其中包含语音合成的结果。

有兴趣的有条件的同学可以下载体验一番,试一试!欢迎关注公粽号:Python兴趣圈,学习更多Python技能、开源项目推荐。

这篇关于新一代开源语音库CoQui TTS冲到了GitHub 20.5k Star的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/229319

相关文章

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

HomeBank:开源免费的个人财务管理软件

在个人财务管理领域,找到一个既免费又开源的解决方案并非易事。HomeBank&nbsp;正是这样一个项目,它不仅提供了强大的功能,还拥有一个活跃的社区,不断推动其发展和完善。 开源免费:HomeBank 是一个完全开源的项目,用户可以自由地使用、修改和分发。用户友好的界面:提供直观的图形用户界面,使得非技术用户也能轻松上手。数据导入支持:支持从 Quicken、Microsoft Money

如何提高 GitHub 的下载速度

如何提高 GitHub 的下载速度 文章目录 如何提高 GitHub 的下载速度1. 注册账号2. 准备好链接3. 创建仓库4. 在码云上下载代码5. 仓库更新了怎么办 一般来说,国内的朋友从 GitHub 上面下载代码,速度最大是 20KB/s,这种龟速,谁能忍受呢? 本文介绍一种方法——利用“码云”,可以大大提高下载速度,亲测有效。 1. 注册账号 去“码云”注册一

开源分布式数据库中间件

转自:https://www.csdn.net/article/2015-07-16/2825228 MyCat:开源分布式数据库中间件 为什么需要MyCat? 虽然云计算时代,传统数据库存在着先天性的弊端,但是NoSQL数据库又无法将其替代。如果传统数据易于扩展,可切分,就可以避免单机(单库)的性能缺陷。 MyCat的目标就是:低成本地将现有的单机数据库和应用平滑迁移到“云”端