本文主要是介绍代码随想录算法训练营Day56|动态规划14,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
代码随想录算法训练营Day56|动态规划14
文章目录
- 代码随想录算法训练营Day56|动态规划14
- 一、1143.最长公共子序列
- 二、 1035.不相交的线
- 三、53. 最大子序和 动态规划
一、1143.最长公共子序列
class Solution {public int longestCommonSubsequence(String text1, String text2) {int[][] dp = new int[text1.length() + 1][text2.length() + 1];for (int i = 1 ; i <= text1.length() ; i++) {char char1 = text1.charAt(i - 1);for (int j = 1; j <= text2.length(); j++) {char char2 = text2.charAt(j - 1);if (char1 == char2) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[text1.length()][text2.length()];}
}
二、 1035.不相交的线
class Solution {public int maxUncrossedLines(int[] nums1, int[] nums2) {int len1 = nums1.length;int len2 = nums2.length;int[][] dp = new int[len1 + 1][len2 + 1];for (int i = 1; i <= len1; i++) {for (int j = 1; j <= len2; j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[len1][len2];}
}
三、53. 最大子序和 动态规划
class Solution {public static int maxSubArray(int[] nums) {if (nums.length == 0) {return 0;}int res = nums[0];int[] dp = new int[nums.length];dp[0] = nums[0];for (int i = 1; i < nums.length; i++) {dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);res = res > dp[i] ? res : dp[i];}return res;}}
这篇关于代码随想录算法训练营Day56|动态规划14的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!