机器学习(hadoop实战)01: 家电故障备件储备预测分析

2023-10-17 18:59

本文主要是介绍机器学习(hadoop实战)01: 家电故障备件储备预测分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

家电故障备件储备预测分析

本例来源于《Hadoop大数据分析与挖掘实战》第十二章家电故障备件储备预测分析。

数据集:请留言,我会私发。

  • 问题:针对手机数据,要求从服务商代码中提取出地区编码,对每个地区进行故障率的预测,从而做到备件的提前储备。

  • 问题分析:从问题描述可以看出,可以看作是对每个地区进行故障的推荐,地区编码作为用户id,故障代码作为项目id,现有数据集中故障率作为评分,使用协同过滤算法进行故障的推荐。

  • 难点:

  1. 需要把故障描述转化为故障代码,故障描述是用户对故障的描述,所以各种各样,很难做到统一,需要提取其中的关键字。
  2. 现有数据集中故障率的计算。
  3. 在计算的时候,地区编码、故障代码都是字符串,但是协同过滤算法会把他们作为long类型处理,会出现数据失真的情况。

本次主要针对手机故障进行分析。
分析流程:

  • 第一步:查看数据集。本次主要分析手机故障,所以只需要excel中Sheet2中的数据(见图1.1),由于hadoop没有读取excel的InputFormat(我自己实现了一个,但是存在bug),所以采用了先把excel导出为txt文件,然后再处理的办法。数据集

    图1.1

  • 第二步:写mr程序计算故障率,map阶段读取文件。按照 \t 切分字符串,过滤掉不符合格式的数据(见代码2.1),然后从中取出服务商代码、故障描述。从服务商代码中取出地区代码,根据手机故障原因标准准则(见图2.3),把故障描述转化为故障代码(见代码2.2),然后写出。

代码2.1/*** 产品大类 品牌 产品型号 序列号 内机编码 服务商代码 受理时间 派工时间 故障原因代码 故障原因描述 维修措施 反映问题描述*/static class ParseMapper extends Mapper<LongWritable, Text, Text, IntWritable> {Text k = new Text();IntWritable v = new IntWritable();int sum = 0;@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {// 删除空行if (!StringUtils.isBlank(value.toString())) {String[] fields = value.toString().split("\t");if (fields.length < 12) {System.out.println(Arrays.toString(fields));sum ++;}// 如果服务商代码或者反映问题描述为空,则删除行if (fields.length >=12 && !StringUtils.isBlank(fields[5]) && !StringUtils.isBlank(fields[11])) {// 服务商代码String districtCode = fields[5];// 反映问题描述String faultTxt = fields[11];try {if (districtCode.split("-").length >= 3) {// 从服务商代码中取出地区编码String district = districtCode.split("-")[2];// 把反映问题描述转化为故障代码int convertCode = convertCode(faultTxt);k.set(district);v.set(convertCode);context.write(k, v);}} catch (Exception e) {e.printStackTrace();}}}}@Overrideprotected void cleanup(Context context) throws IOException, InterruptedException {System.out.println("sum: " + sum);}}
代码2.2/*** 把反映问题描述转化为故障类型代码* @param faultText 反映问题描述* @return 故障类型代码*/public static int convertCode(String faultText) {int code = 0;String fault = faultText.toLowerCase();if (fault.contains("lcd")) {code = 2;} else if (fault.contains("键") && !fault.contains("印错")) {code = 3;} else if (fault.contains("网络") || fault.contains("服务")|| fault.contains("信号") || fault.contains("连接")|| fault.contains("功率低")) {code = 5;} else if (fault.contains("通话") || fault.contains("听筒")|| fault.contains("送话")) {code = 4;} else if (fault.contains("灯")) {code = 6;} else if (fault.contains("蓝牙")) {code = 7;} else if (fault.contains("不吃卡") || fault.contains("不识卡")|| fault.contains("不读卡")) {code = 8;} else if (fault.contains("电池") || fault.contains("耗电")) {code = 9;} else if (fault.contains("拍照") || fault.contains("照相")|| fault.contains("摄像头")) {code = 10;} else if (fault.contains("触屏")) {code = 11;} else if (fault.contains("振动")) {code = 12;} else if (fault.contains("mp3") || fault.contains("音")&& !fault.contains("键") && !fault.contains("喇叭")) {code = 13;} else if (fault.contains("喇叭") || fault.contains("耳机")) {code = 14;} else if (fault.contains("充电")) {code = 15;} else if (fault.contains("gps") || fault.contains("卫星")) {code = 16;} else if (fault.contains("壳") || fault.contains("螺丝")|| fault.contains("缝隙") || fault.contains("印错")) {code = 17;} else if (fault.contains("开机") || fault.contains("死机")|| fault.contains("开关机") || fault.contains("开(关)机")) {code = 1;} else {code = 18;}return code;}

手机故障原因标准准则

图2.3(部分)

  • 第三步:reduce阶段计算故障率。map阶段写出的时候把地区编码作为key,所以在reduce阶段取数据的时候,会把相同地区编码的数据作为一组,一起拿过来。然后针对每个地区,用每种故障数量除以总故障数量,得到每个地区各种故障的故障率。应该除以该地区的总故障率,因为我们使用协同过滤算法,研究的是各个地区之间故障率的相似度。计算完写出到文件。
    static class RateReducer extends Reducer<Text, IntWritable, Text, DoubleWritable> {String districtCode = null;Map<Integer, Integer> map = new HashMap<>();double sum = 0D;@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {districtCode = key.toString();for (IntWritable value : values) {int faultCode = value.get();// 如果map中没有此值,则放入1,有,则在此基础加1map.merge(faultCode, 1, Integer::sum);sum++;}// 写出for (Map.Entry<Integer, Integer> entry : map.entrySet()) {double rate = entry.getValue() / sum;Text outKey = new Text(districtCode + "\t" + entry.getKey());DoubleWritable value = new DoubleWritable(rate);context.write(outKey, value);}// 初始化值map.clear();sum = 0;districtCode = null;}@Overrideprotected void cleanup(Context context) throws IOException, InterruptedException {map.clear();sum = 0;districtCode = null;}}
  • 第四步:根据现有故障率,使用mahout协同过滤算法进行故障率预测。
    在处理之前,先使用MemoryIDMigrator把地区编码转化成了long,防止模型把数据从string转为long,造成前面的0缺失的问题,预测的时候,再把地区编码从long映射回string。具体代码如下:
import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator;
import org.apache.mahout.cf.taste.impl.model.MemoryIDMigrator;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSimilarity;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;import java.io.*;
import java.util.HashMap;
import java.util.List;
import java.util.Map;/*** @author affable* @description 故障率预测的协同过滤算法* @date 2020-04-21 19:12*/
public class FaultPredict {/*** 推荐的个数*/private static final int RECOMMEND_NUM = 18;/*** 用户即地区代码* @param args 程序输入参数*/public static void main(String[] args) throws IOException, TasteException {// *******************************处理开始******************************************Map<Long, String> faultMap = loadFault();// 使用推荐模型之前,对数据的districtCode映射成long类型// 防止模型把districtCode转为long,出现数据异常String filePath = "data/faultRate/part-r-00000";File dealFile = new File("data/faultRateDeal.csv");MemoryIDMigrator memoryIDMigrator = new MemoryIDMigrator();FileWriter dealWriter = new FileWriter(dealFile, true);FileReader reader = new FileReader(filePath);BufferedReader bufferedReader = new BufferedReader(reader);String line = null;while ((line = bufferedReader.readLine()) != null) {String[] fields = line.split("\t");long districtCodeLong = memoryIDMigrator.toLongID(fields[0]);memoryIDMigrator.storeMapping(districtCodeLong, fields[0]);dealWriter.write(districtCodeLong + "," + fields[1] + "," + fields[2] + "\n");dealWriter.flush();}dealWriter.close();bufferedReader.close();reader.close();// ***********************************处理完成**************************************// **********************************模型推荐开始************************************// 创建包含用户评分的协同过滤模型FileDataModel dataModel = new FileDataModel(dealFile);// 指定使用欧式距离UserSimilarity userSimilarity = new EuclideanDistanceSimilarity(dataModel);// 指定临近算法// 指定距离最近的一定百分比的用户作为邻居// 百分比: 20%UserNeighborhood userNeighborhood = new ThresholdUserNeighborhood(0.2, userSimilarity, dataModel);// 创建推荐器Recommender recommender = new GenericUserBasedRecommender(dataModel, userNeighborhood, userSimilarity);// 获取所有的用户LongPrimitiveIterator userIDIter = dataModel.getUserIDs();StringBuilder recommendedRecord = new StringBuilder();while (userIDIter.hasNext()) {// 获取针对每个用户的推荐long userId = userIDIter.nextLong();List<RecommendedItem> recommendList = recommender.recommend(userId, RECOMMEND_NUM);for (RecommendedItem recommendedItem : recommendList) {recommendedRecord.append(String.format("%s,%s,%f\n", memoryIDMigrator.toStringID(userId), faultMap.get(recommendedItem.getItemID()), recommendedItem.getValue()));}}// **********************************模型推荐结束************************************// 写出推荐结果到文件File recommendFile = new File("data/recommend.csv");FileWriter writer = new FileWriter(recommendFile, true);writer.write(recommendedRecord.toString());writer.flush();writer.close();}/*** 加载故障代码对应的故障类型map* @return map*/private static Map<Long, String> loadFault() {Map<Long, String> faultMap = new HashMap<>(18);faultMap.put(1L, "开机故障");faultMap.put(2L, "LCD显示故障");faultMap.put(3L, "按键故障");faultMap.put(4L, "通话故障");faultMap.put(5L, "网络故障");faultMap.put(6L, "灯故障");faultMap.put(7L, "蓝牙机故障");faultMap.put(8L, "不读卡");faultMap.put(9L, "电池故障");faultMap.put(10L, "拍照故障");faultMap.put(11L, "触屏故障");faultMap.put(12L, "振动故障");faultMap.put(13L, "MP3、收音故障");faultMap.put(14L, "喇叭故障");faultMap.put(15L, "充电故障");faultMap.put(16L, "GPRS故障");faultMap.put(17L, "外观故障");faultMap.put(18L, "其他故障");return faultMap;}}

如有需要完整代码,请留言。

这篇关于机器学习(hadoop实战)01: 家电故障备件储备预测分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/227338

相关文章

Java使用Tesseract-OCR实战教程

《Java使用Tesseract-OCR实战教程》本文介绍了如何在Java中使用Tesseract-OCR进行文本提取,包括Tesseract-OCR的安装、中文训练库的配置、依赖库的引入以及具体的代... 目录Java使用Tesseract-OCRTesseract-OCR安装配置中文训练库引入依赖代码实

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下