《机器学习》西瓜书课后习题3.4——python解交叉验证和留一法的对率回归错误率

本文主要是介绍《机器学习》西瓜书课后习题3.4——python解交叉验证和留一法的对率回归错误率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《机器学习》西瓜书课后习题3.4——python解交叉验证和留一法的对率回归错误率

《机器学习》西瓜书P69

3.3 选择两个UCI数据集,比较10折交叉验证法和留一法所估计出的对率回归的错误率

数据集:鸢尾花数据集

数据集属性信息:

1.萼片长度(以厘米计)
2.萼片宽度(以厘米计)
3.花瓣长度(以厘米计)
4.花瓣宽度(以厘米计)
5.类别:

数据集处理说明:该数据集中鸢尾花种类共有3种,分别是:Iris-setosa、Iris-versicolor和Iris-virginica,由于题目中要求采用两种方法对数据集进行处理,因此我们将Iris-setosa和Iris-versicolor划分在一个数据集(称为1号数据集),并采用留一法法进行数据集的划分,Iris-versicolor和Iris-virginica放入另一个数据集(称为2号数据集)并使用交叉验证法进行划分。

【代码】

#Iris-setosa标记为0,Iris-versicolor标记为1,Iris-virginica标记为2
def loadDataset(filename):dataset_12=[]dataset_23=[]with open(filename,'r',encoding='utf-8') as csvfile:csv_reader = csv.reader(csvfile)for row in csv_reader:if row[4] == 'Iris-setosa':row[4]=0dataset_12.append(copy.deepcopy(row))elif row[4]=='Iris-virginica':row[4]=2dataset_23.append(copy.deepcopy(row) )else:row[4]=1dataset_12.append(copy.deepcopy(row))dataset_23.append(copy.deepcopy(row))data_12 = [[float(x) for x in row] for row in dataset_12]data_23= [[float(x) for x in row] for row in dataset_23]# print(data_12)# print(data_23)return data_12,data_23

注意:在该程序中我们使用append(copy.deepcopy(row))进行深度复制,目的是避免对数组的操作影响原数组的变化,下同!!!!


针对2号数据集:

【代码思路】我们使用10折交叉验证法对数据集每次划分为训练集和测试集,然后使用梯度下降法对训练集进行训练,并使用测试集求得每次的准确率,最终我们将10次准确率取平均值,即为最终的正确率。

【详细过程】

  1. 首先利用python中自带的函数进行10折交叉验证划分,由于返回的是划分数据的下标,因此我们需要找到对应的数据元素,然后,对得到的训练集和测试集中的数据进行预处理(在数组最后增加一列1,0,1存储真实标记),接着就可以参与训练,我们将迭代次数设置为2000次,我们发现当迭代次数达到2000之后,准确率很难再增长,于是取2000作为终止条件,将得到的w分别与10个测试集进行运算比较,得到10组准确率,取平均值即可。

  2. 最终我们得到10折交叉验证法进行对率回归得到的准确率为96%!

    #定义sigmoid函数
    def sigmoid(z):return 1.0 / (1 + np.exp(-z))#计算正确率
    def testing(testset,w,testlabel):data = np.mat(testset).astype(float)y = sigmoid(np.dot(data, w))b, c = np.shape(y)  # 功能是查看矩阵或者数组的维数。rightcount = 0for i in range(b):flag = -1if y[i, 0] > 0.5:flag = 1elif y[i, 0] < 0.5:flag = 0if testlabel[i] == flag:rightcount += 1rightrate = rightcount / len(testset)return rightrate#迭代求w
    def training(dataset,labelset,testset,testlabel):# np.dot(a,b) a和b矩阵点乘# np.transpose()  转置# np.ones((m,n))  创建一个m行n列的多维数组data=np.mat(dataset).astype(float)label=np.mat(labelset).transpose()w = np.ones((len(dataset[0]),1))#步长n=0.0001# 每次迭代计算一次正确率(在测试集上的正确率)# 达到0.90的正确率,停止迭代rightrate=0.0count=0while count<5000:c=sigmoid(np.dot(data,w))b=c-labelchange = np.dot(np.transpose(data),b)w=w-change*n#预测,更新准确率if rightrate<testing(testset,w,testlabel):rightrate=testing(testset,w,testlabel)count+=1return rightratedef formdata(dataset,flag):#flag=1代表的是对一号数据集进行数据预处理,falg=2针对2号数据集#主要是将训练集和测试集进行规范化处理,便于下一步进行正确率计算和迭代求wdata=[]label=[]if flag==1:for row in dataset:label.append(copy.deepcopy(row[4]))row[4]=1data.append(copy.deepcopy(row))elif flag == 2:for row in dataset:label.append(copy.deepcopy(row[4]-1))row[4]=1data.append(copy.deepcopy(row))return data,labeldef changedata(dataset,train_index,test_index):#对数据集进行处理,增加最后一列为1trainset=[]testset=[]for i in train_index:trainset.append(copy.deepcopy(dataset[i]))for i in test_index:testset.append(copy.deepcopy(dataset[i]))return trainset,testset#10折交叉验证法对数据集23进行分类
    def Flod_10(dataset):sam=KFold(n_splits=10)rightrate=0.0for train_index,test_index in sam.split(dataset):#得到训练集和测试集的索引# 下面将索引转化为所对应的元素,并将训练集进行迭代,每次求出最大的正确率trainset,testset=changedata(dataset,train_index,test_index)#print(trainset)trainset,trainlabel=formdata(trainset,2)testset,testlabel=formdata(testset,2)rightrate+=training(trainset,trainlabel,testset,testlabel)print(rightrate/10)

    最终结果

[[-1.90048431][-1.20567294][ 2.31544454][ 2.66095658][-0.20997301]]
[[-1.86985439][-1.3288315 ][ 2.3427924 ][ 2.64797632][-0.16119412]]
[[-1.90055107][-1.29322442][ 2.37973509][ 2.68461371][-0.26297932]]
[[-2.00438577][-1.18000688][ 2.43352222][ 2.65712983][-0.15617894]]
[[-1.94737348][-1.16692044][ 2.35919664][ 2.59038908][-0.14542583]]
[[-1.91467144][-1.22980709][ 2.27891615][ 2.74578832][-0.23887025]]
[[-1.94810073][-1.27450893][ 2.37093425][ 2.64955955][-0.24649082]]
[[-1.99150258][-1.25235181][ 2.35312496][ 2.75221192][-0.20701229]]
[[-1.96302072][-1.29024687][ 2.31087635][ 2.8008307 ][-0.16047752]]
[[-1.9630222 ][-1.35486554][ 2.50563773][ 2.44772595][-0.25646535]]
0.96

针对1号数据集

【代码思路】我们使用留一法进行划分,将数据集的75%作为训练集,25%作为测试集,由于Iris-setosa、Iris-versicolor的个数为1:1因此采用分层抽样的方法,我们将每种花的75%作为训练集,25%作为测试集,然后进行迭代求准确率即可!

#留出法——对数据集12进行分类
#将75%的样本作为训练,其余用作测试
def LeftOut(dataset):train12=[]test12=[]for i in range(len(dataset)):if i<=37:train12.append(copy.deepcopy(dataset[i]))elif i>50 and i<=88:train12.append(copy.deepcopy(dataset[i]))else:test12.append(copy.deepcopy(dataset[i]))trainset,trainlabel=formdata(train12,1)testset,testlabel=formdata(test12,1)rightrate=training(trainset,trainlabel,testset,testlabel)print(rightrate)

最终结果

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YWyjAXfj-1620097001273)(C:\Users\hp\AppData\Roaming\Typora\typora-user-images\image-20210504105611147.png)]
【完整源代码】

import copy
import csv
import numpy as np
from sklearn.model_selection import KFold#Iris-setosa标记为0,Iris-versicolor标记为1,Iris-virginica标记为2
def loadDataset(filename):dataset_12=[]dataset_23=[]with open(filename,'r',encoding='utf-8') as csvfile:csv_reader = csv.reader(csvfile)for row in csv_reader:if row[4] == 'Iris-setosa':row[4]=0dataset_12.append(copy.deepcopy(row))elif row[4]=='Iris-virginica':row[4]=2dataset_23.append(copy.deepcopy(row) )else:row[4]=1dataset_12.append(copy.deepcopy(row))dataset_23.append(copy.deepcopy(row))data_12 = [[float(x) for x in row] for row in dataset_12]data_23= [[float(x) for x in row] for row in dataset_23]# print(data_12)# print(data_23)return data_12,data_23#定义sigmoid函数
def sigmoid(z):return 1.0 / (1 + np.exp(-z))#计算正确率
def testing(testset,w,testlabel):data = np.mat(testset).astype(float)y = sigmoid(np.dot(data, w))b, c = np.shape(y)  # 功能是查看矩阵或者数组的维数。rightcount = 0for i in range(b):flag = -1if y[i, 0] > 0.5:flag = 1elif y[i, 0] < 0.5:flag = 0if testlabel[i] == flag:rightcount += 1rightrate = rightcount / len(testset)return rightrate#迭代求w
def training(dataset,labelset,testset,testlabel):# np.dot(a,b) a和b矩阵点乘# np.transpose()  转置# np.ones((m,n))  创建一个m行n列的多维数组data=np.mat(dataset).astype(float)label=np.mat(labelset).transpose()w = np.ones((len(dataset[0]),1))#步长n=0.0001# 每次迭代计算一次正确率(在测试集上的正确率)# 达到0.90的正确率,停止迭代rightrate=0.0count=0while count<5000:c=sigmoid(np.dot(data,w))b=c-labelchange = np.dot(np.transpose(data),b)w=w-change*n#预测,更新准确率if rightrate<testing(testset,w,testlabel):rightrate=testing(testset,w,testlabel)count+=1print(w)return rightratedef formdata(dataset,flag):#flag=1代表的是对一号数据集进行数据预处理,falg=2针对2号数据集#主要是将训练集和测试集进行规范化处理,便于下一步进行正确率计算和迭代求wdata=[]label=[]if flag==1:for row in dataset:label.append(copy.deepcopy(row[4]))row[4]=1data.append(copy.deepcopy(row))elif flag == 2:for row in dataset:label.append(copy.deepcopy(row[4]-1))row[4]=1data.append(copy.deepcopy(row))return data,labeldef changedata(dataset,train_index,test_index):#对数据集进行处理,增加最后一列为1trainset=[]testset=[]for i in train_index:trainset.append(copy.deepcopy(dataset[i]))for i in test_index:testset.append(copy.deepcopy(dataset[i]))return trainset,testset#留出法——对数据集12进行分类
#将75%的样本作为训练,其余用作测试
def LeftOut(dataset):train12=[]test12=[]for i in range(len(dataset)):if i<=37:train12.append(copy.deepcopy(dataset[i]))elif i>50 and i<=88:train12.append(copy.deepcopy(dataset[i]))else:test12.append(copy.deepcopy(dataset[i]))trainset,trainlabel=formdata(train12,1)testset,testlabel=formdata(test12,1)rightrate=training(trainset,trainlabel,testset,testlabel)print(rightrate)#10折交叉验证法对数据集23进行分类
def Flod_10(dataset):sam=KFold(n_splits=10)rightrate=0.0for train_index,test_index in sam.split(dataset):#得到训练集和测试集的索引# 下面将索引转化为所对应的元素,并将训练集进行迭代,每次求出最大的正确率trainset,testset=changedata(dataset,train_index,test_index)#print(trainset)trainset,trainlabel=formdata(trainset,2)testset,testlabel=formdata(testset,2)rightrate+=training(trainset,trainlabel,testset,testlabel)print(rightrate/10)filename="iris.csv"
data_12,data_23=loadDataset(filename)
LeftOut(data_12)
Flod_10(data_23)

【结论】

10折交叉验证法的错误率:0%(存在偶然性,需要进行多次随机抽样取平均值,我们未进行该操作

留一法所估计出的对率回归的错误率:4%

这篇关于《机器学习》西瓜书课后习题3.4——python解交叉验证和留一法的对率回归错误率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/226024

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e