Opencv——findContours函数再探(由轮廓联想连通域)

2023-10-17 08:30

本文主要是介绍Opencv——findContours函数再探(由轮廓联想连通域),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 关于调参的一些思考
    • 分析图像的一些角度
    • 面积、周长、矩形度、圆形度、宽长比
    • 例1:找出汽车轮毂圆孔(从轮廓和连通域两个角度)
    • 例2:找出芯片中间正方形物体
    • 例3:桌面上橘色物体
    • 总结

关于调参的一些思考

合理的参数设置,应该是基于对需要解决的问题的一些已知条件。如需要提取的线段的长度范围,需要定位的工件的尺寸、大小(面积)、形状,周长,矩形度,圆形度等。

分析图像的一些角度

1.从算法上
图像降噪,直方图增强,二值化,频率分析,图像形态学,几何信息 提取,特征提取,等各种数学方法。 尽可能多的输出结果。
2.从策略上
筛选出实际需要的结果。
把握需要的信息和干扰信息的本质差距。

面积、周长、矩形度、圆形度、宽长比

圆形度
最小外接矩形
宽敞比
这里不做具体分析,以后专门写一篇笔记。

例1:找出汽车轮毂圆孔(从轮廓和连通域两个角度)

原图:
原图
分析:
1、获取二值图像(选用二值化阈值或者canny算子扫描)
2、通过findContours函数寻找连通域,轮廓则是对应连通域的轮廓
3、通过minAreaRect函数获取轮廓最小矩形框(可旋转),利改矩形框的特征来锁定目标(这里我们限制,矩形框的长宽比值在1附近,并且矩形框的宽度大于10)
4、对锁定的轮廓,通过drawContours函数绘制轮廓(注意参数,倒数第二个填-1则为填该改轮廓,类似漫水填充,不过漫水填充不能获取轮廓特征)
另一种思路:
1、获取二值图像(这里为了使圆圈内部为白,使用反阈值)
2、利用connectedComponentsWithStats函数获取连通域矩阵
3、通过状态矩阵statsMat,来获取连通域最小外接四边形 (bounding box)的 x, y, width,height和面 积(像素数量)
4、通过四边形的条件来限制

思路1代码:

int main()
{cv::Mat srcMat = imread("D:\\opencv_picture_test\\rim.png", 1);Mat dstMat, binMat;cvtColor(srcMat, dstMat, COLOR_BGR2GRAY);threshold(dstMat, binMat, 0, 255, THRESH_OTSU);imshow("bin", binMat);//通过findContours函数寻找连通域vector<vector<Point>> contours;vector<Vec4i> hierarchy;findContours(binMat, contours, RETR_LIST,CHAIN_APPROX_NONE);//绘制轮廓,内填充for (int i = 0; i < contours.size(); i++) {RotatedRect rbox = minAreaRect(contours[i]);if (fabs(rbox.size.width * 1.0 / rbox.size.height - 1) < 0.1 && rbox.size.width > 10)drawContours(srcMat, contours, i, Scalar(0, 255, 255), -1, 8);}imshow("rim", srcMat);waitKey(0);
}

二值图:
二值图
框定图:
框定图
思路2代码:

int main()
{Mat lableMat;Mat statsMat;Mat centerMat;Mat srcMat = imread("D:\\opencv_picture_test\\轮廓\\rim.png", 1);		//读取灰度Mat dstMat;cvtColor(srcMat, srcMat, COLOR_BGR2GRAY);//调用阈值函数threshold(srcMat, dstMat, 120, 255,THRESH_BINARY_INV);//腐蚀操作//Mat element = getStructuringElement(MORPH_ELLIPSE, Size(9,9));		//morphologyEx(dstMat,dstMat, MORPH_ERODE, element);		int nComp = cv::connectedComponentsWithStats(dstMat,lableMat,statsMat,centerMat,8,CV_32S);for (int i = 1; i < nComp; i++){cout << "pixels = " << statsMat.at<int>(i, 4) << endl;cout << "width = " << statsMat.at<int>(i, 2) << endl;cout << "height = " << statsMat.at<int>(i, 3) << endl;cout << endl;}for (int i = 1; i < nComp; i++){Rect bndbox;bndbox.x = statsMat.at<int>(i, 0);bndbox.y = statsMat.at<int>(i, 1);bndbox.width = statsMat.at<int>(i, 2);bndbox.height = statsMat.at<int>(i, 3);if (fabs(bndbox.width * 1.0 / bndbox.height - 1) < 0.1 && bndbox.width > 30)rectangle(srcMat, bndbox, CV_RGB(255, 255, 255), 1, 8, 0);}imshow("src", srcMat);//imshow("dst", dstMat);waitKey(0);
}

效果图:
结果

例2:找出芯片中间正方形物体

原图:
原图
分析:
1、获取二值图像(选用二值化阈值或者canny算子扫描)
2、通过findContours函数寻找连通域,轮廓则是对应连通域的轮廓
3、通过minAreaRect函数获取轮廓最小矩形框(可旋转),利改矩形框的特征来锁定目标(这里我们限制,矩形框的长宽比值在1附近,并且矩形框的宽度大于10)
4、对锁定的轮廓,通过drawContours函数绘制轮廓
5、通过轮廓外最小矩形的四个顶点坐标,来绘制边框
另一种思路:
1、获取二值图像(这里为了使圆圈内部为白,使用反阈值)
2、利用connectedComponentsWithStats函数获取连通域矩阵
3、通过状态矩阵statsMat,来获取连通域最小外接四边形 (bounding box)的 x, y, width,height和面 积(像素数量)
4、通过四边形的条件来限制
最小矩形
思路1代码:

*--------------------------【练习2】矩形框-------------------------------------*/
int main()
{cv::Mat srcMat = imread("D:\\opencv_picture_test\\轮廓\\die_on_chip.png", 1);Mat dstMat, binMat;cvtColor(srcMat, dstMat, COLOR_BGR2GRAY);threshold(dstMat, binMat, 0, 255, THRESH_OTSU);imshow("bin", binMat);//通过findContours函数寻找连通域vector<vector<Point>> contours;vector<Vec4i> hierarchy;findContours(binMat, contours, RETR_LIST, CHAIN_APPROX_NONE);//绘制轮廓for (int i = 0; i < contours.size(); i++) {RotatedRect rbox = minAreaRect(contours[i]);if (fabs(rbox.size.width * 1.0 / rbox.size.height - 1) < 0.1 && rbox.size.width > 10){drawContours(srcMat, contours, i, Scalar(0, 255, 255), 1, 8);Point2f vtx[4];rbox.points(vtx);for (int j = 0; j < 4; ++j) {cv::line(srcMat, vtx[j], vtx[j < 3 ? j + 1 : 0], Scalar(0, 0, 255), 3, LINE_AA);}}}imshow("die_on_chip", srcMat);waitKey(0);
}

结果
思路2代码:

*--------------------------【练习1连通域解法】-------------------------------------*/int main()
{Mat lableMat;Mat statsMat;Mat centerMat;Mat srcMat = imread("D:\\opencv_picture_test\\轮廓\\die_on_chip.png", 1);		//读取灰度Mat dstMat;cvtColor(srcMat, srcMat, COLOR_BGR2GRAY);//调用阈值函数threshold(srcMat, dstMat, 120, 255,THRESH_BINARY);//腐蚀操作//Mat element = getStructuringElement(MORPH_ELLIPSE, Size(9,9));		//morphologyEx(dstMat,dstMat, MORPH_ERODE, element);		int nComp = cv::connectedComponentsWithStats(dstMat,lableMat,statsMat,centerMat,8,CV_32S);for (int i = 1; i < nComp; i++){cout << "pixels = " << statsMat.at<int>(i, 4) << endl;cout << "width = " << statsMat.at<int>(i, 2) << endl;cout << "height = " << statsMat.at<int>(i, 3) << endl;cout << endl;}for (int i = 1; i < nComp; i++){Rect bndbox;bndbox.x = statsMat.at<int>(i, 0);bndbox.y = statsMat.at<int>(i, 1);bndbox.width = statsMat.at<int>(i, 2);bndbox.height = statsMat.at<int>(i, 3);if (fabs(bndbox.width * 1.0 / bndbox.height - 1) < 0.2 && statsMat.at<int>(i, 4)>=1200)rectangle(srcMat, bndbox, CV_RGB(0, 255, 255), 1, 8, 0);}imshow("src", srcMat);//imshow("dst", dstMat);waitKey(0);
}

效果图:
思路2

例3:桌面上橘色物体

分析:
1、RGB转HSV图
2、将HSV通道分离,获取三个通道值
3、对S通道进行二值化处理
4、接下来按照上面两题的思路,找轮廓,框定。、
代码:

//*--------------------------【练习3】矩形框-------------------------------------*/
int main()
{cv::Mat srcMat = imread("D:\\opencv_picture_test\\轮廓\\topic1.jpg", 1);Mat dstMat, binMat;cvtColor(srcMat, dstMat, COLOR_BGR2HSV);vector<Mat> channels;split(dstMat, channels);//namedWindow("H", WINDOW_NORMAL);//WINDOW_NORMAL允许用户自由伸缩窗口//imshow("H", channels.at(0));namedWindow("S", WINDOW_NORMAL);//WINDOW_NORMAL允许用户自由伸缩窗口imshow("S", channels.at(1));//namedWindow("V", WINDOW_NORMAL);//WINDOW_NORMAL允许用户自由伸缩窗口//imshow("V", channels.at(2));//将S通道的图像复制,然后处理Mat S_Mat;channels.at(1).copyTo(S_Mat);//namedWindow("S", WINDOW_NORMAL);//WINDOW_NORMAL允许用户自由伸缩窗口//imshow("S", S_Mat);threshold(S_Mat, binMat, 120, 255, THRESH_BINARY);namedWindow("bin", WINDOW_NORMAL);//WINDOW_NORMAL允许用户自由伸缩窗口imshow("bin", binMat);//通过findContours函数寻找连通域vector<vector<Point>> contours;vector<Vec4i> hierarchy;findContours(binMat, contours, RETR_LIST, CHAIN_APPROX_NONE);//绘制轮廓for (int i = 0; i < contours.size(); i++) {RotatedRect rbox = minAreaRect(contours[i]);if (fabs(rbox.size.width * 1.0 / rbox.size.height - 1) < 0.3 && rbox.size.width > 10){drawContours(srcMat, contours, i, Scalar(0, 255, 255), 1, 8);Point2f vtx[4];rbox.points(vtx);for (int j = 0; j < 4; ++j) {cv::line(srcMat, vtx[j], vtx[j < 3 ? j + 1 : 0], Scalar(255, 255, 255), 2, LINE_AA);}}}namedWindow("topic1", WINDOW_NORMAL);//WINDOW_NORMAL允许用户自由伸缩窗口imshow("topic1", srcMat);waitKey(0);return 0;}

S通道图:
S
用S通道进行二值化:
二值图
框定图:
框定图

总结

从目前来看,框定目标物体我们从轮廓和连通域都可以。
其中,利用minAreaRect函数可以获取轮廓最小矩形框的参数值,也包括了轮廓的部分信息。
利用connectedComponentsWithStats获取连通域,可从中获取的连通域信息。
利用这些信息,结合矩形度、圆形度、宽长比等数学特征则可以剔除一些不符合特征的备选项。

这篇关于Opencv——findContours函数再探(由轮廓联想连通域)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/224184

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Django中的函数视图和类视图以及路由的定义方式

《Django中的函数视图和类视图以及路由的定义方式》Django视图分函数视图和类视图,前者用函数处理请求,后者继承View类定义方法,路由使用path()、re_path()或url(),通过in... 目录函数视图类视图路由总路由函数视图的路由类视图定义路由总结Django允许接收的请求方法http