python实现smote处理正负样本失衡问题

2023-10-17 04:20

本文主要是介绍python实现smote处理正负样本失衡问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       机器学习中难免遇到正负样本不平衡问题,处理办法通常有梁总,一:过采样,增加正样本数据;二:欠采样,减少负样本数据,缺点是会丢失一些重要信息。smote属于过采样。

代码

# from imblearn.over_sampling import BorderlineSMOTE
# from imblearn.over_sampling import SMOTENC
# from imblearn.over_sampling import SVMSMOTE
# from imblearn.over_sampling import KMeansSMOTE
# from imblearn.over_sampling import ADASYN
# from imblearn.over_sampling import RandomOverSampler
import pandas as pd 
import numpy as np
from collections import Counter
from imblearn.over_sampling import SMOTE# 使用imlbearn库中上采样方法中的SMOTE接口
import matplotlib.pyplot as plt# 生成一组0和1比例为9比1的样本,X为特征,y为对应的标签
x1=[np.random.randint(1,31) for i in range(90)]+[np.random.randint(50,81) for i in range(10)]
x2=[np.random.randint(1,31) for i in range(90)]+[np.random.randint(50,81) for i in range(10)]
y=[0 for i in range(90)]+[1 for i in range(10)]
x=pd.DataFrame({'x1':x1,'x2':x2})
y=pd.DataFrame(y)# 查看所生成的样本类别分布,0和1样本比例9比1,属于类别不平衡数据
print(Counter(list(y[0])))
fig1=plt.figure(1)
plt.scatter(x['x1'],x['x2'])
plt.show# 定义SMOTE模型,random_state相当于随机数种子的作用
smo = SMOTE(sampling_strategy='auto',random_state=10)
x_smo, y_smo = smo.fit_sample(x, y)
print(Counter(list(y_smo[0])))
fig2=plt.figure(2)
plt.scatter(x_smo['x1'],x_smo['x2'])
plt.show

结果

处理前

处理后

如果对你有帮助,请点下赞,予人玫瑰手有余香!

时时仰望天空,理想就会离现实越来越近!

 

这篇关于python实现smote处理正负样本失衡问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/222914

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4