APOLLO:lane_borrow_decider代码解读

2023-10-17 01:59

本文主要是介绍APOLLO:lane_borrow_decider代码解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

APOLLO:lane_borrow_decider代码解读

  • 一、作用:是否产生变道决策
  • 二、数据结构
  • 三、代码逻辑
  • 四、参考链接

一、作用:是否产生变道决策

是否nuge前方静态、低速障碍物),并将决策结果保存到 reference_line_info和mutable_path_decider_status 中。在这里插入图片描述

二、数据结构

定义了一个path_decider_status:(message PathDeciderStatus)
auto* mutable_path_decider_status = injector_->planning_context() ->mutable_planning_status() ->mutable_path_decider();
Injector_是DependencyInjector类的对象, 通过planning_context()方法返回一个PlanningContext对象, 然后通过mutable_planning_status()返回PlanningStatus 对象,
PlanningStatus 是proto定义的一个类,至于如何通过->mutable_path_decider()调用到PathDeciderStatus,这点还不太清楚。

message PathDeciderStatus {enum LaneBorrowDirection {LEFT_BORROW = 1;   // borrow left neighbor laneRIGHT_BORROW = 2;  // borrow right neighbor lane}optional int32 front_static_obstacle_cycle_counter = 1 [default = 0];optional int32 able_to_use_self_lane_counter = 2 [default = 0];optional bool is_in_path_lane_borrow_scenario = 3 [default = false];optional string front_static_obstacle_id = 4 [default = ""];repeated LaneBorrowDirection decided_side_pass_direction = 5;
}

三、代码逻辑

1、首先在Process()中判断路径是否复用,如果是则跳过,然后调用IsNecessaryToBorrowLane(*frame, *reference_line_info))来判断是否进行变道,如果是在把变道决策信息存入 reference_line_info中;
2、判断是否变道:

bool PathLaneBorrowDecider::IsNecessaryToBorrowLane(const Frame& frame, const ReferenceLineInfo& reference_line_info) {auto* mutable_path_decider_status = injector_->planning_context()->mutable_planning_status()->mutable_path_decider();//判断当前是否借道场景中if (mutable_path_decider_status->is_in_path_lane_borrow_scenario()) {// If originally borrowing neighbor lane:// 根据数值优化求解轨迹后的信息计算是否退出借道场景(如:避让输出轨迹无解时退出借道)if (mutable_path_decider_status->able_to_use_self_lane_counter() >= 6) {// If have been able to use self-lane for some time, then switch to// non-lane-borrowing.mutable_path_decider_status->set_is_in_path_lane_borrow_scenario(false);mutable_path_decider_status->clear_decided_side_pass_direction();AINFO << "Switch from LANE-BORROW path to SELF-LANE path.";}} else {//如果当前不处于借道场景中,以下条件都满足时才能借道// If originally not borrowing neighbor lane:// ADC requirements check for lane-borrowing:// 只有一条参考线,才能借道// 起点速度小于最大借道允许速度// 阻塞障碍物必须远离路口// 阻塞障碍物会一直存在// 阻塞障碍物与终点位置满足要求// 为可侧面通过的障碍物ADEBUG << "Blocking obstacle ID["<< mutable_path_decider_status->front_static_obstacle_id() << "]";// ADC requirements check for lane-borrowing:if (!HasSingleReferenceLine(frame)) { //只有一条参考线return false;}if (!IsWithinSidePassingSpeedADC(frame)) { //起点速度小于最大借道允许速度return false;}// Obstacle condition check for lane-borrowing:if (!IsBlockingObstacleFarFromIntersection(reference_line_info)) {return false; //阻塞障碍物必须远离路口}if (!IsLongTermBlockingObstacle()) { //阻塞障碍物会一直存在return false;}if (!IsBlockingObstacleWithinDestination(reference_line_info)) {return false; // 阻塞障碍物与终点位置满足要求}if (!IsSidePassableObstacle(reference_line_info)) {return false; //为可侧面通过的障碍物}// switch to lane-borrowing// set side-pass direction// 在无避让方向时重新计算避让方向,若左、右借道空间均不满足则不借道,is_in_path_lane_borrow_scenario_标志为false;// 左借道条件满足左借道、右借道条件满足右借道,is_in_path_lane_borrow_scenario_为true。const auto& path_decider_status =injector_->planning_context()->planning_status().path_decider();if (path_decider_status.decided_side_pass_direction().empty()) {// first time init decided_side_pass_directionbool left_borrowable;bool right_borrowable;//根据车道线类型判断是否可以借道CheckLaneBorrow(reference_line_info, &left_borrowable, &right_borrowable);if (!left_borrowable && !right_borrowable) {mutable_path_decider_status->set_is_in_path_lane_borrow_scenario(false);return false; //左右借道都不满足时,重新计算} else {//满足左侧或者右侧借道条件mutable_path_decider_status->set_is_in_path_lane_borrow_scenario(true);if (left_borrowable) {mutable_path_decider_status->add_decided_side_pass_direction(PathDeciderStatus::LEFT_BORROW);}if (right_borrowable) {mutable_path_decider_status->add_decided_side_pass_direction(PathDeciderStatus::RIGHT_BORROW);}}}AINFO << "Switch from SELF-LANE path to LANE-BORROW path.";}return mutable_path_decider_status->is_in_path_lane_borrow_scenario();
}

2.1 IsWithinSidePassingSpeedADC

bool PathLaneBorrowDecider::IsWithinSidePassingSpeedADC(const Frame& frame) {return frame.PlanningStartPoint().v() < FLAGS_lane_borrow_max_speed;()这个值为5m/s,也就是初始速度不能大于5m/s?
}

2.2 IsLongTermBlockingObstacle() ,FLAGS_long_term_blocking_obstacle_cycle_threshold的默认值是3,具体代表啥意思?

bool PathLaneBorrowDecider::IsLongTermBlockingObstacle() {if (injector_->planning_context()->planning_status().path_decider().front_static_obstacle_cycle_counter() >=FLAGS_long_term_blocking_obstacle_cycle_threshold) {ADEBUG << "The blocking obstacle is long-term existing.";return true;} else {ADEBUG << "The blocking obstacle is not long-term existing.";return false;}
}

2.3IsBlockingObstacleWithinDestination 障碍物不在终点范围内

  if (blocking_obstacle_s - adc_end_s >reference_line_info.SDistanceToDestination()) {return false;}return true;I0516 20:26:24.494535  2986 path_lane_borrow_decider.cc:193] Blocking obstacle is at s = 59.4525
I0516 20:26:24.494540  2986 path_lane_borrow_decider.cc:194] ADC is at s = 53.983
I0516 20:26:24.494544  2986 path_lane_borrow_decider.cc:195] Destination is at s = 87.8644

2.4 IsSidePassableObstacle里面的IsNonmovableObstacle,前方最近的障碍物距离自车不是很远(35m),前方最近的障碍物在路边,或者是在停车道上,前方最近的障碍物的前方(15m内)没有其他障碍物

  //目标太远,不借道if (obstacle.PerceptionSLBoundary().start_s() >adc_sl_boundary.end_s() + kAdcDistanceThreshold) {ADEBUG << " - It is too far ahead and we are not so sure of its status.";return false;}// Obstacle is parked obstacle.//目标停止时借道if (IsParkedVehicle(reference_line_info.reference_line(), &obstacle)) {ADEBUG << "It is Parked and NON-MOVABLE.";return true;}double delta_s = other_obstacle->PerceptionSLBoundary().start_s() -obstacle.PerceptionSLBoundary().end_s();if (delta_s < 0.0 || delta_s > kObstaclesDistanceThreshold) {continue;}

2.5 CheckLaneBorrow,以2米为间隔遍历车前100m的参考线,判断左右车道线,如果是白线或者黄线,则不变道,log信息如下:

I0516 20:26:24.494583  2986 path_lane_borrow_decider.cc:316] s[53.983] left_lane_boundary_type[DOTTED_YELLOW]
I0516 20:26:24.494601  2986 path_lane_borrow_decider.cc:330] s[53.983] right_neighbor_lane_borrowable[SOLID_WHITE]
I0516 20:26:24.494607  2986 path_lane_borrow_decider.cc:316] s[55.983] left_lane_boundary_type[DOTTED_YELLOW]
I0516 20:26:24.494613  2986 path_lane_borrow_decider.cc:316] s[57.983] left_lane_boundary_type[DOTTED_YELLOW]
I0516 20:26:24.494618  2986 path_lane_borrow_decider.cc:316] s[59.983] left_lane_boundary_type[DOTTED_YELLOW]
I0516 20:26:24.494623  2986 path_lane_borrow_decider.cc:316] s[61.983] left_lane_boundary_type[DOTTED_YELLOW]
I0516 20:26:24.494628  2986 path_lane_borrow_decider.cc:316] s[63.983] left_lane_boundary_type[DOTTED_YELLOW]
I0516 20:26:24.494633  2986 path_lane_borrow_decider.cc:316] s[65.983] left_lane_boundary_type[DOTTED_YELLOW]
I0516 20:26:24.494638  2986 path_lane_borrow_decider.cc:316] s[67.983] left_lane_boundary_type[DOTTED_YELLOW]

四、参考链接

1、参考资料1
2、参考资料2

这篇关于APOLLO:lane_borrow_decider代码解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/222191

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时