NLG(自然语言生成)评估指标介绍

2023-10-16 06:52

本文主要是介绍NLG(自然语言生成)评估指标介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

诸神缄默不语-个人CSDN博文目录

本文介绍自然语言生成任务中的各种评估指标。
因为我是之前做文本摘要才接触到这一部分内容的,所以本文也是文本摘要中心。

持续更新。

文章目录

  • 1. 常用术语
  • 2. ROUGE (Recall Oriented Understudy for Gisting Evaluation)
    • 1. 计算指标
    • 2. 对rouge指标的更深入研究和改进
  • 3. BLEU (Bilingual Evaluation Understudy)
  • 4. METEOR (Metric for Evaluation for Translation with Explicit Ordering)
  • 5. Perplexity
  • 6. Bertscore
  • 7. Faithfulness
  • 8. 人工评估指标
  • 9. InfoLM
  • 10. MOVERSCORE
  • 11. BEER
  • 12. BEND
  • 参考资料

1. 常用术语

模型生成的句子、预测结果——candidate
真实标签——reference、ground-truth

2. ROUGE (Recall Oriented Understudy for Gisting Evaluation)

ROUGE值是文本摘要任务重最常用的机器评估指标,衡量生成文本与真实标签之间的相似程度。

precision:candidate中匹配reference的内容占candidate比例
recall:candidate中匹配reference的内容占reference比例

示例:

Reference: I work on machine learning.Candidate A: I work.Candidate B: He works on machine learning.

在这个例子中,用unigram(可以理解为一个词或token)1衡量匹配:A就比B的precision更高(A的匹配内容I work占candidate 100%,B的on machine learning占60%),但B的recall更高(60% VS 40%)。

出处论文:(2004 WS) ROUGE: A Package for Automatic Evaluation of Summaries

感觉没有2004年之后的文本摘要论文不使用这个指标的,如果看到有的话我会专门来这里提一嘴的。

分类:ROUGE-N(常用其中的ROUGE-1和ROUGE-2), ROUGE-L,ROUGE-W,ROUGE-S(后两种不常用)
原版论文中ROUGE主要关注recall值,但事实上在用的时候可以用precision、recall和F值。(我看到很多论文都用的是F值)

1. 计算指标

每种rouge值原本都是计算recall的,主要区别在于这个匹配文本的单位的选择:

ROUGE-N:基于n-grams,如ROUGE-1计算基于匹配unigrams的recall,以此类推。
ROUGE-L:基于longest common subsequence (LCS)
ROUGE-W:基于weighted LCS
ROUGE-S:基于skip-bigram co-occurence statistics(skip-bigram指两个共同出现的单词,不管中间隔了多远。要计算任何bigram的出现可能 C n 2 C_n^2 Cn2

以ROUGE-L为例, A A A 是candidate,长度 m m m B B B 是reference,长度 n n n
P = L C S ( A , B ) m P=\frac{LCS(A,B)}{m} P=mLCS(A,B) R = L C S ( A , B ) n R=\frac{LCS(A,B)}{n} R=nLCS(A,B) F = ( 1 + b 2 ) R P R + b 2 P F=\frac{(1+b^2)RP}{R+b^2P} F=R+b2P(1+b2)RP

2. 对rouge指标的更深入研究和改进

(2018 EMNLP) A Graph-theoretic Summary Evaluation for ROUGE

批判文学:(2023 ACL) Rogue Scores:喷原包有bug。嘛我之前也喷过2,终于有顶会论文喷了我很欣慰

3. BLEU (Bilingual Evaluation Understudy)

常用于翻译领域。
出处论文:(2002 ACL) Bleu: a Method for Automatic Evaluation of Machine Translation

precision用modified n-gram precision估计,recall用best match length估计。

Modified n-gram precision:
n-gram precision是candidate中与reference匹配的n-grams占candidates的比例。但仅用这一指标会出现问题。
举例来说:

Reference: I work on machine learning.Candidate 1: He works on machine learning.Candidate 2: He works on on machine machine learning learning.

candidate 1的unigram precision有60%(3/5),candidate 2的有75%(6/8),但显然candidate 1比2更好。
为了解决这种问题,我们提出了“modified” n-gram precision,仅按照reference中匹配文本的出现次数来计算candidate中的出现次数。这样candidate中的onmachinelearning就各自只计算一次,candidate 2的unigram precision就变成了37.5%(3/8)。

对多个candidate的n-gram precision,求几何平均(因为precision随n呈几何增长,因此対数平均能更好地代表所有数值(这块其实我没看懂)):
P r e c i s i o n = exp ⁡ ( ∑ n = 1 N w n log ⁡ p n ) , where  w n = 1 / n Precision=\exp(\sum_{n=1}^Nw_n\log p_n),\ \text{where} \ w_n=1/n Precision=exp(n=1Nwnlogpn), where wn=1/n

Best match length:
recall的问题在于可能存在多个reference texts,故难以衡量candidate对整体reference的sensitivity(这块其实我也没看懂)。显然长的candidate会包含更多匹配文本,但我们也已经保证了candidate不会无限长,因为这样的precision可能很低。因此,我们可以从惩罚candidate的简洁性(文本短)入手来设计recall指标:
在modified n-gram precision中添加一个multiplicative factor B P BP BP
B P = { 1 , if  c > r exp ⁡ ( 1 − r c ) , otherwise \begin{aligned} BP=\begin{cases}1,& \text{if}\ c >r\\ \exp \left( 1-\dfrac{r}{c}\right) ,&\text{otherwise}\end{cases} \end{aligned} BP={1,exp(1cr),if c>rotherwise
其中 c c c 是candidates总长度, r r r 是reference有效长度(如reference长度平均值),随着candidate长度( c c c)下降, B P BP BP 也随之减少,起到了惩罚短句的作用。

4. METEOR (Metric for Evaluation for Translation with Explicit Ordering)

常用于翻译领域。

出处:(2005) METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

BLEU的问题在于 B P BP BP 值所用的长度是平均值,因此单句得分不清晰。而METEOR调整了precision和recall的计算方式,用基于mapping unigrams的weighted F-score和penalty function for incorrect word order来代替。

Weighted F-score:
首先,我们要找到candidate和reference间最大的可以形成对齐(alignment)的映射(mappings)子集(subset)。在经过Porter stemming[^3]、用了WordNet同义词后,假设找到的对齐数是 m m m,则precision就是 m / c m/c m/c c c c 是candidate长度)、recall是 m / r m/r m/r r r r 是reference长度),F就是 F = P R α P + ( 1 − α ) R F=\frac{PR}{\alpha P+(1-\alpha)R} F=αP+(1α)RPR

Penalty function:
考虑candidate中的单词顺序:
P e n a l t y = γ ( c m ) β , where  0 ≤ γ ≤ 1 Penalty=\gamma(\frac{c}{m})^\beta,\ \text{where}\ 0\leq\gamma\leq1 Penalty=γ(mc)β, where 0γ1
其中 c c c 是matching chunks数, m m m 是matches总数。因此如果大多数matches是连续的, c c c 就会小,penalty就会低。这部分我的理解是:连续的matches组成一个chunk。但我不确定,可能我会去查阅更多资料。

最终METEOR得分的计算方式为:
( 1 − P e n a l t y ) F (1-Penalty)F (1Penalty)F

5. Perplexity

常用于语言模型训练。
待补。

6. Bertscore

使用该指标的论文:Rewards with Negative Examples for Reinforced Topic-Focused Abstractive Summarization
待补。

7. Faithfulness

  1. Entailment Ranking Generated Summaries by Correctness: An Interesting but Challenging Application for Natural Language Inference:用预训练的基于entailment的方法评估原文蕴含生成摘要的概率
  2. FactCC Evaluating the Factual Consistency of Abstractive Text Summarization:用基于规则的变换生成假摘要,训练基于Bert的模型,分类生成摘要是否faithful
  3. DAE Annotating and Modeling Fine-grained Factuality in Summarization:收集细粒度的词/依赖/句级别的faithfulness的标注,用这些标注训练factuality检测模型

8. 人工评估指标

文本的流畅程度、对原文的忠实程度、对原文重要内容的包含程度、语句的简洁程度等

9. InfoLM

出处论文:(2022 AAAI) InfoLM: A New Metric to Evaluate Summarization & Data2Text Generation
待补。

10. MOVERSCORE

待补

11. BEER

待补。

12. BEND

待补。

参考资料

  1. Metrics for NLG evaluation. Simple natural language processing… | by Desh Raj | Explorations in Language and Learning | Medium
  2. 我还没看,等我看完了补上:
    Revisiting Automatic Evaluation of Extractive Summarization Task: Can We Do Better than ROUGE?
    Benchmarking Answer Verification Methods for Question Answering-Based Summarization Evaluation Metrics
    SARI
    InfoLM: A New Metric to Evaluate Summarization & Data2Text Generation
    SPICE
    Play the Shannon Game With Language Models: A Human-Free Approach to Summary Evaluation
    Reference-free Summarization Evaluation via Semantic Correlation and Compression Ratio

  1. 参考unigram_百度百科
    父词条:n-gram
    unigram: 1个word
    bigram: 2个word
    trigram : 3个word
    (注意此处的word是英文的概念,在中文中可能会根据需要指代字或词)
    中文中如果用字作为基本单位,示例:
    西安交通大学:
    unigram 形式为:西/安/交/通/大/学
    bigram形式为: 西安/安交/交通/通大/大学
    trigram形式为:西安交/安交通/交通大/通大学 ↩︎

  2. pyrouge和rouge在Linux上的安装方法以及结果比较 ↩︎

这篇关于NLG(自然语言生成)评估指标介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219807

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Python实现NLP的完整流程介绍

《Python实现NLP的完整流程介绍》这篇文章主要为大家详细介绍了Python实现NLP的完整流程,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 编程安装和导入必要的库2. 文本数据准备3. 文本预处理3.1 小写化3.2 分词(Tokenizatio

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

详解Java中如何使用JFreeChart生成甘特图

《详解Java中如何使用JFreeChart生成甘特图》甘特图是一种流行的项目管理工具,用于显示项目的进度和任务分配,在Java开发中,JFreeChart是一个强大的开源图表库,能够生成各种类型的图... 目录引言一、JFreeChart简介二、准备工作三、创建甘特图1. 定义数据集2. 创建甘特图3.

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数