[bzoj2734][DP]集合选数

2023-10-16 03:18
文章标签 dp 集合 bzoj2734 选数

本文主要是介绍[bzoj2734][DP]集合选数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description

《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x
和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1,
2,…, n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。

Input

只有一行,其中有一个正整数 n,30%的数据满足 n≤20。

Output

仅包含一个正整数,表示{1, 2,…, n}有多少个满足上述约束条件 的子集。

Sample Input

4

Sample Output

8

HINT

【样例解释】

有8 个集合满足要求,分别是空集,{1},{1,4},{2},{2,3},{3},{3,4},{4}。

题解

胡乱画一下你就可以发现
比如对于1来说,我们可以画出一个矩阵
1 3 9 27
2 6 18 54
4 12 36 108

右边是三倍 下面是两倍,显然这个矩阵中四连通的不能一起选
又发现这个矩阵的行列都非常小,不会超过17和11
那就可以愉快地压列dp啦…
复杂度非常不满的…

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<ctime>
#include<map>
#include<bitset>
#include<set>
#define LL long long
#define mp(x,y) make_pair(x,y)
#define pll pair<long long,long long>
#define pii pair<int,int>
using namespace std;
inline int read()
{int f=1,x=0;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}return x*f;
}
int stack[20];
inline void write(int x)
{if(x<0){putchar('-');x=-x;}if(!x){putchar('0');return;}int top=0;while(x)stack[++top]=x%10,x/=10;while(top)putchar(stack[top--]+'0');
}
inline void pr1(int x){write(x);putchar(' ');}
inline void pr2(int x){write(x);putchar('\n');}
const int MAXN=2;
const int MAXM=(1<<12)+5;
const LL mod=1000000001;
int n,bin[25],is[MAXM],f[MAXN][MAXM],cnt[25];
void init()
{bin[0]=1;for(int i=1;i<=20;i++)bin[i]=bin[i-1]<<1;for(int i=0;i<bin[12];i++)if(!(i&(i<<1))&&!(i&(i>>1)))is[i]=1;
}
void ad(int &x,int y){x+=y;if(x>=mod)x-=mod;}
int dp(int x)
{int li=0;while(x<=n){cnt[++li]=0;int temp=x;while(temp<=n)cnt[li]++,temp*=3;x*=2;}memset(f,0,sizeof(f));f[0][0]=1;int st=0;for(int i=1;i<=li;i++){st^=1;for(int j=0;j<bin[cnt[i]];j++)if(is[j]){int sum=0;for(int k=0;k<bin[cnt[i-1]];k++)if(is[k]&&!(j&k))ad(sum,f[st^1][k]);f[st][j]=sum;}}int re=0;for(int i=0;i<bin[cnt[li]];i++)if(is[i])ad(re,f[st][i]);return re;
}
int main()
{init();n=read();LL ans=1;for(int i=1;i<=n;i++)if((i%2)&&(i%3))ans=ans*(LL)dp(i)%mod;pr2(ans);return 0;
}

这篇关于[bzoj2734][DP]集合选数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/218640

相关文章

基于Redis有序集合实现滑动窗口限流的步骤

《基于Redis有序集合实现滑动窗口限流的步骤》滑动窗口算法是一种基于时间窗口的限流算法,通过动态地滑动窗口,可以动态调整限流的速率,Redis有序集合可以用来实现滑动窗口限流,本文介绍基于Redis... 滑动窗口算法是一种基于时间窗口的限流算法,它将时间划分为若干个固定大小的窗口,每个窗口内记录了该时间

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

uva 10029 HASH + DP

题意: 给一个字典,里面有好多单词。单词可以由增加、删除、变换,变成另一个单词,问能变换的最长单词长度。 解析: HASH+dp 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc