在8*8的国际象棋棋盘上,安放8个皇后,要求没有一个皇后能够“吃掉”其他一个皇后,即任意两个皇后都不能处于同一行,同一列或同一条对角线上这样的格局称为问题的一个解。(后面有n*n皇后)

本文主要是介绍在8*8的国际象棋棋盘上,安放8个皇后,要求没有一个皇后能够“吃掉”其他一个皇后,即任意两个皇后都不能处于同一行,同一列或同一条对角线上这样的格局称为问题的一个解。(后面有n*n皇后),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

步骤:   由于任意两个皇后不能同行,及每一行只能放置一个皇后,因此将第i个皇后放置在第i行中。这样在放置第i个皇后时,只要考虑他与前i-1个皇后处于不同列和不同对角线位置即可。

程序中设计了3个函数:

1.函数Check()用来判断皇后所放位置(row,column)是否可行

2.函数Output()用来输出可行解,及输出棋盘

3.函数EightQueen()采用递归算法实现在row行放置皇后

算法分析:

对于八皇后求解可采用回溯算法,从上之下依次在每一行放置皇后,进行搜索,若在某一行的任意一列放置皇后均不能满足要求,则不再向下搜索,而进行回溯,回溯至其他列可放置皇后的一行,再向下搜索,直到搜索至最后一行,找到可行解输出结果。

程序流程图:

 

/*author:雷桂艺
time:2021年12月6日16:23
version:1.0
description:每一行只能放置一个皇后,因此将第i个皇后放置在第i行中。这样在放置第i个皇后时,只要考虑他与前i-1个皇后处于不同列和不同对角线位置即可。、对于八皇后求解可采用回溯算法,从上之下依次在每一行放置皇后,进行搜索,若在某一行的任意一列放置皇后均不能满足要求,则不再向下搜索,而进行回溯,回溯至其他列可放置皇后的一行,再向下搜索,直到搜索至最后一行,找到可行解输出结果。程序中设计了3个函数:1.	函数Check()用来判断皇后所放位置(row,column)是否可行2.	函数Output()用来输出可行解,及输出棋盘3.	函数EightQueen()采用递归算法实现在row行放置皇后
*/#include <stdio.h>
#include <stdlib.h>
typedef int BOOL;
#define ture 1;
#define false 0;
int num = 0;
char m[8][8] = { '*' };
//m[8][8]表示棋盘,初始为*,表示未放置皇后//检查在第row行,第column列放置一枚皇后是否可行
BOOL Check(int row, int column)
{int i, j;if (row == 1){return ture;}for (i = 0; i <= row - 2; i++)//每一列只能有一个皇后{if (m[i][column - 1] == 'Q'){return false;}}//左上至右下只能有一个皇后i = row - 2;j = i - (row - column);while (i >=0 && j >= 0){if (m[i][j] == 'Q') return false;i--;j--;}//右上至左下只能有一枚皇后i = row - 2;j = row + column - i - 2;while (i >= 0 && j <= 7){if (m[i][j] == 'Q') return false;i--;j++;}return ture;
}//当为可行解时,输出棋盘
void Output()
{int i, j;num++;printf("可行解 %d:\n", num);for (i = 0; i < 8; i++){for (j = 0; j < 8; j++){printf(" %c", m[i][j]);}printf("\n");}
}//采用递归函数实现八皇后的回溯算法
//求解当棋盘前row-1行已放置好皇后,在第row行放置皇后
void EightQueen(int row)
{int j;for (j = 0; j < 8; j++){m[row - 1][j] = 'Q';if (Check(row, j + 1) == true){if (row == 8) Output();else EightQueen(row+1);}m[row - 1][j] = '*';}
}void main()
{EightQueen(1);
}

n皇后

算法分析:

对于N皇后求解仍采用回溯算法,从上之下依次在每一行放置皇后,进行搜索,若在某一行的任意一列放置皇后均不能满足要求,则不再向下搜索,而进行回溯,回溯至其他列可放置皇后的一行,再向下搜索,直到搜索至最后一行,找到可行解输出结果。

但与八皇后问题相比,n皇后问题的难点在与:8皇后由于提前确定了皇后的数量以及棋盘的大小,所以可以在程序中直接开辟好确定的棋盘空间;但n皇后的个数需要从键盘中输入,无法开辟动态的全局变量,只能先开辟一块足够大的存储空间,然后将键盘输入的皇后数量以及棋盘大小通过传参的方式传入函数中,在输出时只输出对应大小的棋盘

程序流程图:

 

#include <stdio.h>
#include <stdlib.h>typedef int BOOL;
#define ture 1;
#define false 0;
int num = 0;
char p[100][100] = {'*'};//首先要开辟一个足够大的棋盘//检查在第row行,第column列放置一枚皇后是否可行
BOOL Check(int row, int column,int number)
{int i, j;if (row == 1){return ture;}for (i = 0; i <= row - 2; i++)//每一列只能有一个皇后{if (p[i][column - 1] == 'Q'){return false;}}//左上至右下只能有一个皇后i = row - 2;j = i - (row - column);while (i >= 0 && j >= 0){if (p[i][j] == 'Q') return false;i--;j--;}//右上至左下只能有一枚皇后i = row - 2;j = row + column - i - 2;while (i >= 0 && j <= number-1){if (p[i][j] == 'Q') return false;i--;j++;}return ture;
}//当为可行解时,输出棋盘
void Output(int number)
{int i, j;num++;printf("可行解 %d:\n", num);for (i = 0; i <number; i++){for (j = 0; j < number; j++){printf(" %c", p[i][j]);}printf("\n");}
}//采用递归函数实现八皇后的回溯算法
//求解当棋盘前row-1行已放置好皇后,在第row行放置皇后
void Queen(int row,int number)
{int j;for (j = 0; j < number; j++){p[row - 1][j] = 'Q';if (Check(row, j + 1,number) == true){if (row == number) Output(number);else Queen(row + 1,number);}p[row - 1][j] = '*';}
}void main()
{int number;printf("输入皇后数量(<=100):\n");scanf("%d", &number);printf("输出最终结果:\n");Queen(1,number);
}

这篇关于在8*8的国际象棋棋盘上,安放8个皇后,要求没有一个皇后能够“吃掉”其他一个皇后,即任意两个皇后都不能处于同一行,同一列或同一条对角线上这样的格局称为问题的一个解。(后面有n*n皇后)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/216213

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

mybatis-plus如何根据任意字段saveOrUpdateBatch

《mybatis-plus如何根据任意字段saveOrUpdateBatch》MyBatisPlussaveOrUpdateBatch默认按主键判断操作类型,若需按其他唯一字段(如agentId、pe... 目录使用场景方法源码方法改造首先在service层定义接口service层接口实现总结使用场景my

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异