激活函数小结:ReLU、ELU、Swish、GELU等

2023-10-15 02:44

本文主要是介绍激活函数小结:ReLU、ELU、Swish、GELU等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • Sigmoid
    • Tanh
    • ReLU
      • Leaky ReLU
      • PReLU
      • ELU
      • SoftPlus
    • Maxout
    • Mish
    • Swish
    • GELU
    • SwiGLU
    • GEGLU
    • 资源

激活函数是神经网络中的非线性函数,为了增强网络的表示能力和学习能力,激活函数有以下几点性质:

  • 连续且可导(允许少数点上不可导)的非线性函数。可导的激活函数可以直接利用数值优化的方法来学习网络参数。
  • 激活函数及其导函数要尽可能的简单,有利于提高网络计算效率。
  • 激活函数的导函数的值域要在一个合适的区间内(不能太大也不能太小),否则会影响训练的效率和稳定性。

Sigmoid

Sigmoid函数(也被称为Logistic函数)的表达式如下:
σ ( x ) = exp ⁡ ( x ) exp ⁡ ( x ) + exp ⁡ ( 0 ) = 1 1 + e x p ( − x ) \sigma(x)=\frac{\exp (x)}{\exp (x)+\exp (0)} = \frac {1}{1+exp(-x)} σ(x)=exp(x)+exp(0)exp(x)=1+exp(x)1

其导数为
d d x σ ( x ) = σ ( x ) ( 1 − σ ( x ) ) \frac{d}{d x} \sigma(x)=\sigma(x)(1-\sigma(x)) dxdσ(x)=σ(x)(1σ(x))

其图像如下图,是一个S型曲线,所以Sigmoid函数可以看做一个“挤压”函数,把一个实数域的输入“挤压”到(0,1)。当输入值在0附近时,Sigmoid函数近似为线性函数;当输入值靠近两端时,对输入进行抑制;输入越小,越接近于0;输入越大,越接近于1。

在这里插入图片描述

from matplotlib import pyplot as plt
import numpy as np
import torch
from torch import nnx = np.linspace(-6, 6, 600)
m0 = nn.Sigmoid()
output0 = m0(torch.Tensor(x))
plt.plot(x, output0, label='Sigmod')
plt.title("Sigmoid Activation Function")
plt.xlabel("x")
plt.ylabel("Activation")
plt.grid()
plt.legend()
plt.show()

Sigmoid激活函数的缺点:

  • 倾向于梯度消失
  • 函数输出不是以0为中心,会使其后一层的神经元的输入发生偏置偏移(Bias Shift),进而使得梯度下降的收敛速度变慢,也就是会降低权重更新的效率
  • 公式中包括指数运算,计算机运行较慢

Tanh

Tanh 函数也是一种S型函数,其定义为
t a n h ( x ) = exp ⁡ ( x ) − exp ⁡ ( − x ) exp ⁡ ( x ) + exp ⁡ ( − x ) tanh(x)=\frac{\exp (x) - \exp (-x)}{\exp (x)+\exp (-x)} tanh(x)=exp(x)+exp(x)exp(x)exp(x)

Tanh函数可以看做放大并平移的Sigmoid函数,其值域为(-1,1),并且Tanh与Sigmoid函数关系如下式:
t a n h ( x ) = 2 σ ( 2 x ) − 1 tanh(x) = 2 \sigma(2x) -1 tanh(x)=2σ(2x)1
Tanh函数如下图所示,它的输入是零中心化的了。
在这里插入图片描述

x = np.linspace(-6, 6, 600)
m0 = nn.Sigmoid()
output0 = m0(torch.Tensor(x))
plt.plot(x, output0, label='Sigmod')
m0_1 = nn.Tanh()
output0_1 = m0_1(torch.Tensor(x))
plt.plot(x, output0_1, label='Tanh')plt.title("Sigmoid and Tanh Activation Functions")
plt.xlabel("x")
plt.ylabel("Activation")
plt.grid()
plt.legend()
plt.show()

ReLU

ReLU(Rectified Linear unit)是最常见的激活函数,其公式为:
R e L U ( x ) = { x x ≥ 0 0 x < 0 = m a x ( 0 , x ) \begin {aligned} ReLU(x) &= \begin{cases} x \ \ \qquad x \ge 0 \\ 0 \ \ \qquad x<0 \end{cases} \\ &= max(0, x) \end {aligned} ReLU(x)={x  x00  x<0=max(0,x)
ReLU函数示意及后面会介绍的几种变种如下图所示:

在这里插入图片描述

x = np.linspace(-6, 6, 600)
m0 = nn.ReLU()
output0 = m0(torch.Tensor(x))
plt.plot(x, output0, label='RELU')
m1 = nn.LeakyReLU()
output1 = m1(torch.Tensor(x))
plt.plot(x, output1, label='LeakyRELU', color='red', linestyle='--')
m2 = nn.ELU()
output2 = m2(torch.Tensor(x))
plt.plot(x, output2, label='ELU', linestyle='dotted')
m3 = nn.Softplus()
output3 = m3(torch.Tensor(x))
plt.plot(x, output3, label='Softplus', linestyle='-.')plt.title("ReLu and It's Varies Activation Functions")
plt.xlabel("x")
plt.ylabel("Activation")
plt.grid()
plt.legend()
plt.show()

ReLU函数的优点是:1. 采用ReLU的神经元只需要进行加、乘和比较的操作,计算上更加高效。2. ReLU函数被认为具有生物学合理性,比如单侧抑制、宽兴奋边界。在生物神经网络中,同时处于兴奋状态的神经元非常稀疏,比如人脑中在同一时刻大概只有 1% ∼ 4% 的神经元处于活跃状态。Sigmoid 型激活函数会导致一个非稀疏的神经网络,而 ReLU 却具有很好的稀疏性,大约 50% 的神经元会处于激活状态.3. 相对于sigmoid函数的两端饱和,ReLU函数为左饱和函数,且在x>0时的导数为1,所以相比之下一定程度上缓解了梯度消失问题,加速梯度下降的收敛速度。

ReLU函数的缺点是:1. 函数输出是非零中心化的,会使其后一层的神经元的输入发生偏置偏移(Bias Shift),进而使得梯度下降的收敛速度变慢。2. ReLU神经元在训练时比较容易”dead",如果参数在一次不恰当的更新后,第一个隐藏层中的某个ReLU神经元在所有的训练数据上都不能被激活,那么这个神经元自身参数的梯度永远都会是0,在以后的训练过程中永远不能被激活,这种现象被称为死亡ReLU问题(Dying ReLU Problem)。(其他隐藏层也是有可能发生的)

为了避免ReLU的缺点,有以下几种广泛使用的ReLU变种

Leaky ReLU

Leaky ReLU的公式如下,也就是使输入x<0时,保持一个很小的梯度 γ \gamma γ,使得神经元非激活时也有一个非零的梯度可以更新参数,避免永远不能被激活:
L e a k y R e L U ( x ) = { x x > 0 γ x x ≤ 0 = m a x ( 0 , x ) + γ m i n ( 0 , x ) \begin {aligned} LeakyReLU(x) &= \begin{cases} x \ \ \qquad x > 0 \\ \gamma x \ \ \qquad x \le 0 \end{cases} \\ &= max(0, x) + \gamma min(0,x) \end {aligned} LeakyReLU(x)={x  x>0γx  x0=max(0,x)+γmin(0,x)
γ \gamma γ是一个很小的常数,如0.01。 当 γ < 1 \gamma <1 γ<1时,Leaky ReLU 也可以写为
L e a k y R e L U ( x ) = m a x ( x , γ x ) LeakyReLU(x) = max(x, \gamma x) LeakyReLU(x)=max(x,γx)

PReLU

PRuLU(Parametric ReLU)引入了一个可学习的参数,不同神经元可以有不同的参数。对第i个神经元的PReLU定义为:
P R e L U i ( x ) = { x x > 0 γ i x x ≤ 0 = m a x ( 0 , x ) + γ i m i n ( 0 , x ) \begin {aligned} PReLU_i(x) &= \begin{cases} x \ \ \qquad x > 0 \\ \gamma_i x \ \ \qquad x \le 0 \end{cases} \\ &= max(0, x) + \gamma_i min(0,x) \end {aligned} PReLUi(x)={x  x>0γix  x0=max(0,x)+γimin(0,x)
其中 γ i \gamma_i γi x ≤ 0 x \le 0 x0时函数的斜率,所以PReLU也是非饱和函数。

如果 γ i = 0 \gamma_i=0 γi=0,PReLU就退化为ReLU。

如果 γ i \gamma_i γi是一个很小的常数,则PReLU就可以看作LeakyReLU。

PReLU可以允许不同神经元具有不同的参数,也可以一组神经元共享一个参数。

ELU

ELU(Exponential Linear Unit)的定义如下:
E R e L U ( x ) = { x x > 0 γ ( e x p ( x ) − 1 ) x ≤ 0 = m a x ( 0 , x ) + m i n ( 0 , γ ( e x p ( x ) − 1 ) ) \begin {aligned} EReLU(x) &= \begin{cases} x \ \ \qquad x > 0 \\ \gamma (exp(x) - 1) \ \ \qquad x \le 0 \end{cases} \\ &= max(0, x) + min(0,\gamma (exp(x) - 1)) \end {aligned} EReLU(x)={x  x>0γ(exp(x)1)  x0=max(0,x)+min(0,γ(exp(x)1))
定义中的 γ ≥ 0 \gamma \ge 0 γ0是一个超参数,决定 x ≤ 0 x \le 0 x0时的饱和曲线,并调整输出均值在0附近,所以ELU是一个近似的零中心化的非线性函数。

SoftPlus

SoftPlus可以看作ReLU函数的平滑版本,其定义为:
S o f t p l u s ( x ) = l o g ( 1 + e x p ( x ) ) Softplus(x) = log(1 + exp(x)) Softplus(x)=log(1+exp(x))
SoftPlus的导数是Sigmoid函数

SoftPlus函数也有与ReLU函数一样的单侧抑制、宽兴奋边界的特性,但没有稀疏激活性。

Maxout

Maxout的输入是上一层神经元的全部原始输出,是一个向量 x = [ x 1 ; x 2 ; ⋯ , ; x D ] \mathbf{x} = [x_1;x_2;\cdots,;x_D] x=[x1;x2;,;xD]

每个Maxout单元有K个权重向量 w k ∈ R D \mathbf{w}_k \in \mathbb{R}^D wkRD ( w k = [ w k , 1 , ⋯ , w k , D ] T \mathbf{w}_k = [w_{k, 1}, \cdots, w_{k,D}]^T wk=[wk,1,,wk,D]T 为第k个权重向量) 和偏置 b k ( 1 ≤ k ≤ K ) b_k(1 \le k \le K) bk(1kK), 对于输入 x \mathbf{x} x,可以得到K个净输入 z k z_k zk 1 ≤ k ≤ K 1 \le k \le K 1kK:
z k = w k T x + b k z_k = \mathbf{w}_k^T x + b_k zk=wkTx+bk
Maxout单元的非线性函数定义为
m a x o u t ( x ) = max ⁡ k ∈ [ 1 , K ] ( z k ) maxout(\mathbf{x}) = \max_{k\in[1,K]} (z_k) maxout(x)=k[1,K]max(zk)
Maxout激活函数可以看做任意凸函数的分段线性近似,并且在有限的点上是不可微的。

Mish

Mish的表达如下式
M i s h ( x ) = x ∗ t a n h ( S o f t p l u s ( x ) ) = x ∗ t a n h ( l n ( 1 + e x ) ) \begin{aligned} Mish(x) &=x∗tanh(Softplus(x)) \\ &= x*tanh(ln(1+e^x)) \end {aligned} Mish(x)=xtanh(Softplus(x))=xtanh(ln(1+ex))
Mish的函数图像如下图

在这里插入图片描述

m1 = nn.Mish()
output1 = m1(torch.Tensor(x))
plt.plot(x, output1, label='Mish')
plt.title("Mish Activation Function")
plt.xlabel("x")
plt.ylabel("Activation")
plt.grid()
plt.legend()
plt.show()

Swish

Swish的定义如下:
s w i s h ( x ) = x σ ( β x ) = x 1 1 + e x p ( − β x ) \begin {aligned} swish(x) &= x \sigma(\beta x) \\ &= x \frac{1}{1+exp(-\beta x)} \end {aligned} swish(x)=xσ(βx)=x1+exp(βx)1
σ \sigma σ是sigmoid函数, β \beta β是可学习的参数或者一个固定超参数。 σ ( . ) ∈ ( 0 , 1 ) \sigma(.) \in (0,1) σ(.)(0,1) 可以看作一种软性的门控机制,当 σ ( β x ) \sigma(\beta x) σ(βx) 接近于1时,门的状态为“开”状态,激活函数的输出近似于x本身;当 σ ( β x ) \sigma(\beta x) σ(βx) 接近于0时,门的状态为“关”,激活函数的输出近似于0.

Swish函数的示意图如下图

在这里插入图片描述

x = np.linspace(-6, 6, 600)
m1 = nn.SiLU()
output1 = m1(torch.Tensor(x))
plt.plot(x, output1, label='Swish')
plt.title("Swish Activation Function")
plt.xlabel("x")
plt.ylabel("Activation")
plt.grid()
plt.legend()
plt.show()
  • β = 0 \beta=0 β=0时, Swish函数变成线性函数x/2
  • β = 1 \beta=1 β=1时, Swish函数在x>0时近似线性,在x<0时近似饱和,同时有一定的单调性
  • β → + ∞ \beta \rightarrow + \infty β+时, Swish函数近似为ReLU函数

所以Swish函数可以看做线性函数和ReLU函数之间的非线性插值函数,其程度由 β \beta β控制

GELU

GELU (Gaussian Error Linear Unit) 也是通过门控机制来调整其输出值的激活函数,其表达式为:
G E L U ( x ) = x P ( X ≤ x ) GELU(x) = xP(X \le x) GELU(x)=xP(Xx)
其中的 P ( X ≤ x ) P(X \le x) P(Xx)是高斯分布 N ( μ , σ 2 ) \mathcal{N}(\mu, \sigma^2) N(μ,σ2)的累积分布函数, μ \mu μ σ \sigma σ也是超参数,一般取标准分布,即 μ = 0 , σ = 1 \mu=0, \sigma=1 μ=0,σ=1

由于高斯分布的累积分布函数为S型函数,所以它可以用Tanh和Sigmoid函数来近似:
G E L U ( x ) ≈ 0.5 x ( 1 + t a n h ( 2 π ( x + 0.044715 x 3 ) ) ) G E L U ( x ) ≈ x σ ( 1.702 x ) GELU(x) \approx 0.5x \left( 1 + tanh (\sqrt{\frac{2}{\pi}} (x+0.044715x^3) ) \right) \\ GELU(x) \approx x \sigma(1.702x) GELU(x)0.5x(1+tanh(π2 (x+0.044715x3)))GELU(x)xσ(1.702x)
当用sigmoid函数来近似时,GELU相当于一种特殊的Swish函数。

GELU的示意图如下:

在这里插入图片描述

x = np.linspace(-6, 6, 600)
m1 = nn.GELU()
output1 = m1(torch.Tensor(x))
plt.plot(x, output1, label='GELU')
plt.title("GELU Activation Function")
plt.xlabel("x")
plt.ylabel("Activation")
plt.grid()
plt.legend()
plt.show()

大模型gpt3使用GELU激活函数

SwiGLU

SwiGLU可以看做采用Swish作为激活函数的GLU变体
S w i G L U ( x , W , V , b , c ) = S w i s h 1 ( x W + b ) ⊗ ( x V + c ) SwiGLU(x, W, V, b, c) = Swish_1(xW + b) \otimes (xV +c) SwiGLU(x,W,V,b,c)=Swish1(xW+b)(xV+c)
Meta开源的LLaMA 和 LLaMA2 大模型使用的激活函数是SwiGLU

GEGLU

GEGLU则可以看做采用GELU作为激活函数的GLU变体
G E G L U ( x , W , V , b , c ) = G E L U ( x W + b ) ⊗ ( x V + c ) GEGLU(x, W, V, b, c) = GELU(xW + b) \otimes (xV +c) GEGLU(x,W,V,b,c)=GELU(xW+b)(xV+c)

GLM-130B 大模型使用的是GEGLU

资源

  1. https://www.jiqizhixin.com/articles/2021-02-24-7
  2. 邱锡鹏《神经网络与深度学习》
  3. A Survey of Large Language Models
  4. https://zhuanlan.zhihu.com/p/650237644

这篇关于激活函数小结:ReLU、ELU、Swish、GELU等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/214852

相关文章

redis-cli命令行工具的使用小结

《redis-cli命令行工具的使用小结》redis-cli是Redis的命令行客户端,支持多种参数用于连接、操作和管理Redis数据库,本文给大家介绍redis-cli命令行工具的使用小结,感兴趣的... 目录基本连接参数基本连接方式连接远程服务器带密码连接操作与格式参数-r参数重复执行命令-i参数指定命

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python中json文件和jsonl文件的区别小结

《Python中json文件和jsonl文件的区别小结》本文主要介绍了JSON和JSONL两种文件格式的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下... 众所周知,jsON 文件是使用php JSON(JavaScripythonpt Object No

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

python安装完成后可以进行的后续步骤和注意事项小结

《python安装完成后可以进行的后续步骤和注意事项小结》本文详细介绍了安装Python3后的后续步骤,包括验证安装、配置环境、安装包、创建和运行脚本,以及使用虚拟环境,还强调了注意事项,如系统更新、... 目录验证安装配置环境(可选)安装python包创建和运行Python脚本虚拟环境(可选)注意事项安装

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Redis的Hash类型及相关命令小结

《Redis的Hash类型及相关命令小结》edisHash是一种数据结构,用于存储字段和值的映射关系,本文就来介绍一下Redis的Hash类型及相关命令小结,具有一定的参考价值,感兴趣的可以了解一下... 目录HSETHGETHEXISTSHDELHKEYSHVALSHGETALLHMGETHLENHSET

python中cv2.imdecode()与cv2.imencode()的使用小结

《python中cv2.imdecode()与cv2.imencode()的使用小结》本文介绍了cv2.imencode()和cv2.imdecode()函数的使用,文中通过示例代码介绍的非常详细,对... 目录1、图片路径带中文的读取和写入1.1 读取1.2 写入2、在网络中传输图片cv2.imencod