TensorFlow入门教程(28)车牌识别之使用EAST模型进行车牌检测(四)

本文主要是介绍TensorFlow入门教程(28)车牌识别之使用EAST模型进行车牌检测(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#
#作者:韦访
#博客:https://blog.csdn.net/rookie_wei
#微信:1007895847
#添加微信的备注一下是CSDN的
#欢迎大家一起学习
#

1、概述

上一讲,我们实现了EAST的代码,但是我们使用的是ICDAR2017数据集,实现的是对自然场景下的文本检测,现在,我们在原来的代码的基础上,来实现针对车牌的检测。

环境配置:

操作系统:Ubuntu 64位

显卡:GTX 1080ti

Python:Python3.7

TensorFlow:2.3.0

 

2、CCPD2019数据集

下载链接: https://github.com/detectRecog/CCPD

CCPD2019是中科大开源的数据集,用于车牌检测以及识别的任务。数据集包含了远/近距离、水平/倾斜角度、不同光照、不同天气等等的包含车牌的照片。但是它也有很多缺陷,比如,大部分都是皖A车牌,都是7位数的燃油车牌,没有新能源车牌等等,不过作为学习使用也够了。

下载解压数据集后,得到如下所示文件夹,

其中,ccpd_开头的文件夹下都是图片数据,splits文件夹下则是文本文件。splits文件夹如下图所示,

随便打开一个文本看看,如下图所示,

可以看到,ccpd_blur.txt文件里的每一行都指向ccpd_blur文件夹下的一个图片文件,其他的也是类似的。

CCPD车牌坐标等信息是直接写在文件名里,格式如下,

info1-info2-info3-info4-info5-info6-info7.jpg

其含义如下,

info1:地域area

info2:倾斜程度Tilt degree

info3:标注框坐标Bounding box coordinates

info4:四个车牌顶角坐标Four vertices locations

info5:车牌号码License plate number

info6:车牌区域亮度信息Brightness

info7:车牌区域模糊程度Blurriness

我们写个代码来分别根据标注框坐标和顶点坐标画出车牌框,代码如下,

import cv2
import numpy as np
import csv 
import osdef line(image, polys, color=(0,0,255)):    image = cv2.line(image, tuple(polys[0]), tuple(polys[1]), color, thickness=5)image = cv2.line(image, tuple(polys[1]), tuple(polys[2]), color, thickness=5)image = cv2.line(image, tuple(polys[2]), tuple(polys[3]), color, thickness=5)image = cv2.line(image, tuple(polys[3]), tuple(polys[0]), color, thickness=5)    return imagedef get_polys(image_file):polys = []print("image_file:", image_file)if not os.path.exists(image_file):return np.array(polys, dtype=np.float32)parts = image_file.split("-")polys_part = parts[3].split("_")print(polys_part)poly = []for p in polys_part:poly.append(p.split("&"))polys.append(np.asarray(poly).astype(np.int32))print("polys:", polys)return polysdef get_rectangle(image_file):polys = []print("image_file:", image_file)if not os.path.exists(image_file):return np.array(polys, dtype=np.float32)parts = image_file.split("-")rect_part = parts[2].split("_")poly = []for p in rect_part:poly.append(p.split("&"))poly = np.asarray(poly).astype(np.int32)    polys.append([poly[0], [poly[1][0], poly[0][1]], poly[1], [poly[0][0], poly[1][1]]])print(polys)return polysdef show(filename):rects = get_rectangle(filename) polys = get_polys(filename)   image = cv2.imread(filename)for rect in rects:print("rect:", rect)image = line(image, rect, (0,0,255))for poly in polys:print("poly:", poly)image = line(image, poly, (255,0,0))image = cv2.resize(image, (512, 512))cv2.imshow("demo1", image)cv2.imwrite("demo1.jpg", image)cv2.waitKey(0)show("ccpd_blur/0359-5_21-151&285_417&398-417&398_179&377_151&285_389&306-0_0_4_33_32_25_12-59-4.jpg")

运行结果,

3、修改代码

现在,我们基于上一讲的代码来修改。

3.1导入坐标

显然,数据集中使用车牌4个顶点坐标更适合我们的EAST算法,根据文件名获取车牌4个顶点坐标的代码如下,

'''
ccpd数据集的坐标等信息直接在文件名中,所以解析文件名即可拿到坐标信息
'''
def load_ccpd_polys(filename):text_polys = []ignored_label = []parts = filename.split("-")polys_part = parts[3].split("_")poly = []for p in polys_part:poly.append(p.split("&"))text_polys.append(np.asarray(poly).astype(np.int32))  ignored_label.append(False)# print(text_polys)  return np.array(text_polys, dtype=np.float32), np.array(ignored_label, dtype=np.bool)

3.2、导入数据集并创建tf.data.Dataset

数据增强的代码跟上一讲中类似,代码如下,

def parse_func(image_file, FLAGS):[image, score_map, geo_map] = tf.py_function(lambda image_file: preprocess(image_file, FLAGS=FLAGS), [image_file], [tf.float32, tf.float32, tf.float32])return image, score_map, geo_mapclass CCPD2019_Dataset:def __init__(self, FLAGS): self.FLAGS = FLAGSccpd_train_dir = os.path.join(FLAGS.ccpd_dataset_dir, FLAGS.ccpd_train_txtfile)ccpd_valid_dir = os.path.join(FLAGS.ccpd_dataset_dir, FLAGS.ccpd_valid_txtfile)        assert os.path.exists(ccpd_train_dir) and os.path.exists(ccpd_valid_dir)        self.train_filelist = get_iamges_from_txt(FLAGS.ccpd_dataset_dir, ccpd_train_dir)self.valid_filelist = get_iamges_from_txt(FLAGS.ccpd_dataset_dir, ccpd_valid_dir)assert len(self.train_filelist) > 0 and len(self.valid_filelist) > 0# 如果有ICDAR数据集,那么将该数据集也加入训练,让其全部当背景图,这样模型对不是车牌的字符能更好的判断if os.path.exists(FLAGS.icadr_dataset_dir) and os.path.exists(FLAGS.icadr_dataset_dir):icadr_train_dir = os.path.join(FLAGS.icadr_dataset_dir, "ch8_training_images")icadr_valid_dir = os.path.join(FLAGS.icadr_dataset_dir, "ch8_validation_images")assert os.path.exists(icadr_train_dir) and os.path.exists(icadr_valid_dir)        icadr_train_filelist = get_images_from_dir(icadr_train_dir)icadr_valid_filelist = get_images_from_dir(icadr_valid_dir)assert len(icadr_train_filelist) > 0 and len(icadr_valid_filelist) > 0self.train_filelist.extend(icadr_train_filelist)self.valid_filelist.extend(icadr_valid_filelist)self.train_filelist = np.asarray(self.train_filelist)self.valid_filelist = np.asarray(self.valid_filelist)np.random.shuffle(self.train_filelist)np.random.shuffle(self.valid_filelist)def create_dataset(self, subset):if subset == "train":filelist = self.train_filelistelse:filelist = self.valid_filelistds = tf.data.Dataset.from_tensor_slices(filelist)ds = ds.map(lambda image_file: parse_func(image_file, FLAGS=self.FLAGS))ds = ds.batch(self.FLAGS.batch_size)ds = ds.prefetch(AUTOTUNE)return ds

从代码中可以看到,如果存在ICDAR数据集,最好将它也加入训练,这样模型能对非车牌的字符能有更好的判断,只用CCPD数据集的话,对于一些不是车牌的字符,模型可能误认为它是车牌的。

3.2、preprocess

因为同时使用两个数据集,所以preprocess函数也要微改一下,代码如下,

def preprocess(image_file, FLAGS, is_test=False):# start = time.time()# print("------start------------")# print(image_file)if not is_test:# tf.data.Dataset需要这样转换一下才能用image_file = image_file.numpy().decode("utf-8")if FLAGS.task == "plate":_,filename = os.path.split(image_file)if filename.startswith("img_"):# icdar数据集的数据polys = []ignored_labels = []else: # ccpd数据集polys, ignored_labels = load_ccpd_polys(image_file)   else:polys, ignored_labels = load_icdar_polys(image_file)   # print("load_icdar_polys time: ", time.time() - start) image = cv2.imread(image_file)image, polys = random_scale_image(image, polys)# print("random_scale_image time: ", time.time() - start) image, polys, ignored_labels = random_crop_area(FLAGS, image, polys, ignored_labels)# print("random_crop_area time: ", time.time() - start) image, polys = pad_image(image, polys, FLAGS.input_size)# print("pad_image time: ", time.time() - start) image, polys = resize(image, polys, FLAGS.input_size)# print("resize time: ", time.time() - start) score_map, geo_map = map_generator(FLAGS, image, polys, ignored_labels)image = (image / 127.5) - 1# print("map_generator time: ", time.time() - start)return image, score_map[::4, ::4, np.newaxis], geo_map[::4, ::4]

其他部分的代码就基本一致了。然后就开始训练即可。

4、验证模型

运行eval.py文件,可以看到我们训练好的模型的运行效果,如下图所示,

可以看到,不管是水平的还是斜的车牌,都能准确识别出来了,而且,对于不是车牌的文字,它也不会误当车牌。

5、完整代码

https://mianbaoduo.com/o/bread/YZWcl5tw

这篇关于TensorFlow入门教程(28)车牌识别之使用EAST模型进行车牌检测(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/214257

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完