神经网络学习小记录73——Pytorch CA(Coordinate attention)注意力机制的解析与代码详解

本文主要是介绍神经网络学习小记录73——Pytorch CA(Coordinate attention)注意力机制的解析与代码详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

神经网络学习小记录73——Pytorch CA(Coordinate attention)注意力机制的解析与代码详解

  • 学习前言
  • 代码下载
  • CA注意力机制的概念与实现
  • 注意力机制的应用

学习前言

CA注意力机制是最近提出的一种注意力机制,全面关注特征层的空间信息和通道信息。
在这里插入图片描述

代码下载

Github源码下载地址为:
https://github.com/bubbliiiing/yolov4-tiny-pytorch

复制该路径到地址栏跳转。

CA注意力机制的概念与实现

在这里插入图片描述
该文章的作者认为现有的注意力机制(如CBAM、SE)在求取通道注意力的时候,通道的处理一般是采用全局最大池化/平均池化,这样会损失掉物体的空间信息。作者期望在引入通道注意力机制的同时,引入空间注意力机制,作者提出的注意力机制将位置信息嵌入到了通道注意力中。

CA注意力的实现如图所示,可以认为分为两个并行阶段:

将输入特征图分别在为宽度和高度两个方向分别进行全局平均池化,分别获得在宽度和高度两个方向的特征图。假设输入进来的特征层的形状为[C, H, W],在经过宽方向的平均池化后,获得的特征层shape为[C, H, 1],此时我们将特征映射到了高维度上;在经过高方向的平均池化后,获得的特征层shape为[C, 1, W],此时我们将特征映射到了宽维度上。

然后将两个并行阶段合并,将宽和高转置到同一个维度,然后进行堆叠,将宽高特征合并在一起,此时我们获得的特征层为:[C, 1, H+W],利用卷积+标准化+激活函数获得特征。

之后再次分开为两个并行阶段,再将宽高分开成为:[C, 1, H]和[C, 1, W],之后进行转置。获得两个特征层[C, H, 1]和[C, 1, W]。

然后利用1x1卷积调整通道数后取sigmoid获得宽高维度上的注意力情况。乘上原有的特征就是CA注意力机制。

实现的python代码为:

class CA_Block(nn.Module):def __init__(self, channel, reduction=16):super(CA_Block, self).__init__()self.conv_1x1 = nn.Conv2d(in_channels=channel, out_channels=channel//reduction, kernel_size=1, stride=1, bias=False)self.relu   = nn.ReLU()self.bn     = nn.BatchNorm2d(channel//reduction)self.F_h = nn.Conv2d(in_channels=channel//reduction, out_channels=channel, kernel_size=1, stride=1, bias=False)self.F_w = nn.Conv2d(in_channels=channel//reduction, out_channels=channel, kernel_size=1, stride=1, bias=False)self.sigmoid_h = nn.Sigmoid()self.sigmoid_w = nn.Sigmoid()def forward(self, x):_, _, h, w = x.size()x_h = torch.mean(x, dim = 3, keepdim = True).permute(0, 1, 3, 2)x_w = torch.mean(x, dim = 2, keepdim = True)x_cat_conv_relu = self.relu(self.bn(self.conv_1x1(torch.cat((x_h, x_w), 3))))x_cat_conv_split_h, x_cat_conv_split_w = x_cat_conv_relu.split([h, w], 3)s_h = self.sigmoid_h(self.F_h(x_cat_conv_split_h.permute(0, 1, 3, 2)))s_w = self.sigmoid_w(self.F_w(x_cat_conv_split_w))out = x * s_h.expand_as(x) * s_w.expand_as(x)return out

注意力机制的应用

注意力机制是一个即插即用的模块,理论上可以放在任何一个特征层后面,可以放在主干网络,也可以放在加强特征提取网络。

由于放置在主干会导致网络的预训练权重无法使用,本文以YoloV4-tiny为例,将注意力机制应用加强特征提取网络上。

如下图所示,我们在主干网络提取出来的两个有效特征层上增加了注意力机制,同时对上采样后的结果增加了注意力机制
在这里插入图片描述
实现代码如下:

attention_block = [se_block, cbam_block, eca_block, CA_Block]#---------------------------------------------------#
#   特征层->最后的输出
#---------------------------------------------------#
class YoloBody(nn.Module):def __init__(self, anchors_mask, num_classes, phi=0):super(YoloBody, self).__init__()self.phi            = phiself.backbone       = darknet53_tiny(None)self.conv_for_P5    = BasicConv(512,256,1)self.yolo_headP5    = yolo_head([512, len(anchors_mask[0]) * (5 + num_classes)],256)self.upsample       = Upsample(256,128)self.yolo_headP4    = yolo_head([256, len(anchors_mask[1]) * (5 + num_classes)],384)if 1 <= self.phi and self.phi <= 3:self.feat1_att      = attention_block[self.phi - 1](256)self.feat2_att      = attention_block[self.phi - 1](512)self.upsample_att   = attention_block[self.phi - 1](128)def forward(self, x):#---------------------------------------------------##   生成CSPdarknet53_tiny的主干模型#   feat1的shape为26,26,256#   feat2的shape为13,13,512#---------------------------------------------------#feat1, feat2 = self.backbone(x)if 1 <= self.phi and self.phi <= 3:feat1 = self.feat1_att(feat1)feat2 = self.feat2_att(feat2)# 13,13,512 -> 13,13,256P5 = self.conv_for_P5(feat2)# 13,13,256 -> 13,13,512 -> 13,13,255out0 = self.yolo_headP5(P5) # 13,13,256 -> 13,13,128 -> 26,26,128P5_Upsample = self.upsample(P5)# 26,26,256 + 26,26,128 -> 26,26,384if 1 <= self.phi and self.phi <= 3:P5_Upsample = self.upsample_att(P5_Upsample)P4 = torch.cat([P5_Upsample,feat1],axis=1)# 26,26,384 -> 26,26,256 -> 26,26,255out1 = self.yolo_headP4(P4)return out0, out1

这篇关于神经网络学习小记录73——Pytorch CA(Coordinate attention)注意力机制的解析与代码详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/214050

相关文章

Java中的Cursor使用详解

《Java中的Cursor使用详解》本文介绍了Java中的Cursor接口及其在大数据集处理中的优势,包括逐行读取、分页处理、流控制、动态改变查询、并发控制和减少网络流量等,感兴趣的朋友一起看看吧... 最近看代码,有一段代码涉及到Cursor,感觉写法挺有意思的。注意是Cursor,而不是Consumer

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

SpringBoot项目注入 traceId 追踪整个请求的日志链路(过程详解)

《SpringBoot项目注入traceId追踪整个请求的日志链路(过程详解)》本文介绍了如何在单体SpringBoot项目中通过手动实现过滤器或拦截器来注入traceId,以追踪整个请求的日志链... SpringBoot项目注入 traceId 来追踪整个请求的日志链路,有了 traceId, 我们在排

HTML5中下拉框<select>标签的属性和样式详解

《HTML5中下拉框<select>标签的属性和样式详解》在HTML5中,下拉框(select标签)作为表单的重要组成部分,为用户提供了一个从预定义选项中选择值的方式,本文将深入探讨select标签的... 在html5中,下拉框(<select>标签)作为表单的重要组成部分,为用户提供了一个从预定义选项中

Python中多线程和多进程的基本用法详解

《Python中多线程和多进程的基本用法详解》这篇文章介绍了Python中多线程和多进程的相关知识,包括并发编程的优势,多线程和多进程的概念、适用场景、示例代码,线程池和进程池的使用,以及如何选择合适... 目录引言一、并发编程的主要优势二、python的多线程(Threading)1. 什么是多线程?2.

Java 8 Stream filter流式过滤器详解

《Java8Streamfilter流式过滤器详解》本文介绍了Java8的StreamAPI中的filter方法,展示了如何使用lambda表达式根据条件过滤流式数据,通过实际代码示例,展示了f... 目录引言 一.Java 8 Stream 的过滤器(filter)二.Java 8 的 filter、fi

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

springboot的调度服务与异步服务使用详解

《springboot的调度服务与异步服务使用详解》本文主要介绍了Java的ScheduledExecutorService接口和SpringBoot中如何使用调度线程池,包括核心参数、创建方式、自定... 目录1.调度服务1.1.JDK之ScheduledExecutorService1.2.spring

MySQL 中的服务器配置和状态详解(MySQL Server Configuration and Status)

《MySQL中的服务器配置和状态详解(MySQLServerConfigurationandStatus)》MySQL服务器配置和状态设置包括服务器选项、系统变量和状态变量三个方面,可以通过... 目录mysql 之服务器配置和状态1 MySQL 架构和性能优化1.1 服务器配置和状态1.1.1 服务器选项