第一门课:神经网络和深度学习(第三周)——浅层神经网络

2023-10-14 22:30

本文主要是介绍第一门课:神经网络和深度学习(第三周)——浅层神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

浅层神经网络

  • 1. 神经网络概览
  • 2. 神经网络的表示
  • 3. 神经网络的输出
  • 4. 多样本向量化
  • 5. 激活函数
  • 6. 为什么需要非线性激活函数
  • 7. 激活函数的导数
  • 8.直观理解反向传播
  • 9. 随机初始化

1. 神经网络概览

在这里插入图片描述

对于以往由逻辑单元组成的简单神经网络,我们对其计算过程已经大致了解。接下来我们类比于浅层神经网络中。

算法过渡:
在这里插入图片描述
逐步求解:
在这里插入图片描述

第一层根据输入计算 z [ 1 ] z^{[1]} z[1] ,然后计算第一层的输出 a [ 1 ] a^{[1]} a[1]
在这里插入图片描述

把第一层的输出 a [ 1 ] a^{[1]} a[1] 作为第二层的输入, 计算 z [ 2 ] z^{[2]} z[2], 代入 sigmoid 函数, 得到输出 a [ 2 ] a^{[2]} a[2], 进而计算损失函数。
在这里插入图片描述
还有反向的求导过程。

2. 神经网络的表示

在这里插入图片描述

3. 神经网络的输出

在这里插入图片描述
每个神经网络单元的工作包括两部分:计算 z z z ,然后根据激活函数 (sigmoid) 计算 σ ( z ) \sigma(z) σ(z)
z 1 [ 1 ] = w 1 [ 1 ] T x + b 1 [ 1 ] , a 1 [ 1 ] = σ ( z 1 [ 1 ] ) z 2 [ 1 ] = w 2 [ 1 ] T x + b 2 [ 1 ] , a 2 [ 1 ] = σ ( z 2 [ 1 ] ) z 3 [ 1 ] = w 3 [ 1 ] T x + b 3 [ 1 ] , a 3 [ 1 ] = σ ( z 3 [ 1 ] ) z 4 [ 1 ] = w 4 [ 1 ] T x + b 4 [ 1 ] , a 4 [ 1 ] = σ ( z 4 [ 1 ] ) \begin{array}{ll} z_{1}^{[1]}=w_{1}^{[1] T} x+b_{1}^{[1]}, & a_{1}^{[1]}=\sigma\left(z_{1}^{[1]}\right) \\ z_{2}^{[1]}=w_{2}^{[1] T} x+b_{2}^{[1]}, & a_{2}^{[1]}=\sigma\left(z_{2}^{[1]}\right) \\ z_{3}^{[1]}=w_{3}^{[1] T} x+b_{3}^{[1]}, & a_{3}^{[1]}=\sigma\left(z_{3}^{[1]}\right) \\ z_{4}^{[1]}=w_{4}^{[1] T} x+b_{4}^{[1]}, & a_{4}^{[1]}=\sigma\left(z_{4}^{[1]}\right) \end{array} z1[1]=w1[1]Tx+b1[1],z2[1]=w2[1]Tx+b2[1],z3[1]=w3[1]Tx+b3[1],z4[1]=w4[1]Tx+b4[1],a1[1]=σ(z1[1])a2[1]=σ(z2[1])a3[1]=σ(z3[1])a4[1]=σ(z4[1])
[ layer ] 上标表示第几层,下标表示该层的第几个节点。
在这里插入图片描述
在这里插入图片描述
输入一个样本的特征向量,四行代码计算出一个简单神经网络的输出,那么输入多个样本呢?请往下看。

4. 多样本向量化

  • 对于 m \mathrm{m} m 个样本, ( i ) (\mathrm{i}) (i) 表示第 i \mathrm{i} i 个样本
    z [ 1 ] ( i ) = W [ 1 ] ( i ) x ( i ) + b [ 1 ] ( i ) a [ 1 ] ( i ) = σ ( z [ 1 ] ( i ) ) z [ 2 ] ( i ) = W [ 2 ] ( i ) a [ 1 ] ( i ) + b [ 2 ] ( i ) a [ 2 ] ( i ) = σ ( z [ 2 ] ( i ) ) \begin{aligned} z^{[1](i)} &=W^{[1](i)} x^{(i)}+b^{[1](i)} \\ a^{[1](i)} &=\sigma\left(z^{[1](i)}\right) \\ z^{[2](i)} &=W^{[2](i)} a^{[1](i)}+b^{[2](i)} \\ a^{[2](i)} &=\sigma\left(z^{[2](i)}\right) \end{aligned} z[1](i)a[1](i)z[2](i)a[2](i)=W[1](i)x(i)+b[1](i)=σ(z[1](i))=W[2](i)a[1](i)+b[2](i)=σ(z[2](i))

  • 为了向量化计算,进行堆叠
    在这里插入图片描述
    注意:

  • 列向看,对应于不同的特征,就是神经网络中的该层的各个节点;

  • 行向看,对应于不同的训练样本。

5. 激活函数

在这里插入图片描述

tanh激活函数sigmoid的平移伸缩结果,其效果在所有场合都优于sigmoid,tanh几乎适合所有场合。例外是,二分类问题的输出层,想让结果介于 0,1之间,所以使用 sigmoid 激活函数。

tanh、 sigmoid两者的缺点:在特别大或者特别小 z z z 的情况下,导数的梯度或者函数的斜率会变得特别小,最后就会接近于0,导致降低梯度下降的速度


激活函数的选择经验

  • 如果输出是0、1值(二分类问题),输出层选择sigmoid函数,其它所有单元都选择Relu函数;

  • sigmoid函数需要进行浮点四则运算,在实践中,使用ReLu激活函数学习的更快;

  • 隐藏层通常会使用Relu激活函数。有时,也会使用tanh激活函数,但Relu的一个缺点是:当是负值的时候,导数等于0;

  • 另一个版本的Relu被称为Leaky Relu,当是负值时,这个函数的值不等于0,而是轻微的倾斜,这个函数通常比Relu激活函数效果要好,尽管在实际中Leaky ReLu使用的并不多。

6. 为什么需要非线性激活函数

线性隐藏层一点用也没有,因为线性函数的组合本身就是线性函数,所以除非你引入非线性,否则你无法计算出更有趣的函数,即使网络层数再多也不行。

  • 不能在隐藏层用线性激活函数,可以用ReLU、tanh、leaky ReLU或者其他的非线性激活函数;
  • 唯一可以用线性激活函数的通常就是输出层;在隐藏层使用线性激活函数非常少见。

7. 激活函数的导数

  • sigmoid
    在这里插入图片描述

  • tanh
    在这里插入图片描述

  • ReLu (Rectified Linear Unit)
    在这里插入图片描述
    z = 0 z=0 z=0 时,可以让导数为 0,或者 1。

  • Leaky ReLU (Leaky Linear Unit)
    在这里插入图片描述
    z = 0 z=0 z=0 时,可以让导数为 0.01,或者 1。

8.直观理解反向传播

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

9. 随机初始化

对于一个神经网络,如果你把权重或者参数都初始化为0,那么梯度下降将不会起作用,并且会存在神经单元的对称性问题,添加再多的神经单元也没有更好的效果。
在这里插入图片描述

  • 常数为什么是0.01,而不是100或者1000 ?因为如果w初始化很大的话,那么z就会很大,所以sigmoid/tanh 激活函数值就会趋向平坦的地方,而sigmoid/tanh 激活函数在很平坦的地方,学习非常慢。
  • 当你训练一个非常非常深的神经网络,你可能要试试0.01以外的常数。

这篇关于第一门课:神经网络和深度学习(第三周)——浅层神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/213566

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操