第一门课:神经网络和深度学习(第三周)——浅层神经网络

2023-10-14 22:30

本文主要是介绍第一门课:神经网络和深度学习(第三周)——浅层神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

浅层神经网络

  • 1. 神经网络概览
  • 2. 神经网络的表示
  • 3. 神经网络的输出
  • 4. 多样本向量化
  • 5. 激活函数
  • 6. 为什么需要非线性激活函数
  • 7. 激活函数的导数
  • 8.直观理解反向传播
  • 9. 随机初始化

1. 神经网络概览

在这里插入图片描述

对于以往由逻辑单元组成的简单神经网络,我们对其计算过程已经大致了解。接下来我们类比于浅层神经网络中。

算法过渡:
在这里插入图片描述
逐步求解:
在这里插入图片描述

第一层根据输入计算 z [ 1 ] z^{[1]} z[1] ,然后计算第一层的输出 a [ 1 ] a^{[1]} a[1]
在这里插入图片描述

把第一层的输出 a [ 1 ] a^{[1]} a[1] 作为第二层的输入, 计算 z [ 2 ] z^{[2]} z[2], 代入 sigmoid 函数, 得到输出 a [ 2 ] a^{[2]} a[2], 进而计算损失函数。
在这里插入图片描述
还有反向的求导过程。

2. 神经网络的表示

在这里插入图片描述

3. 神经网络的输出

在这里插入图片描述
每个神经网络单元的工作包括两部分:计算 z z z ,然后根据激活函数 (sigmoid) 计算 σ ( z ) \sigma(z) σ(z)
z 1 [ 1 ] = w 1 [ 1 ] T x + b 1 [ 1 ] , a 1 [ 1 ] = σ ( z 1 [ 1 ] ) z 2 [ 1 ] = w 2 [ 1 ] T x + b 2 [ 1 ] , a 2 [ 1 ] = σ ( z 2 [ 1 ] ) z 3 [ 1 ] = w 3 [ 1 ] T x + b 3 [ 1 ] , a 3 [ 1 ] = σ ( z 3 [ 1 ] ) z 4 [ 1 ] = w 4 [ 1 ] T x + b 4 [ 1 ] , a 4 [ 1 ] = σ ( z 4 [ 1 ] ) \begin{array}{ll} z_{1}^{[1]}=w_{1}^{[1] T} x+b_{1}^{[1]}, & a_{1}^{[1]}=\sigma\left(z_{1}^{[1]}\right) \\ z_{2}^{[1]}=w_{2}^{[1] T} x+b_{2}^{[1]}, & a_{2}^{[1]}=\sigma\left(z_{2}^{[1]}\right) \\ z_{3}^{[1]}=w_{3}^{[1] T} x+b_{3}^{[1]}, & a_{3}^{[1]}=\sigma\left(z_{3}^{[1]}\right) \\ z_{4}^{[1]}=w_{4}^{[1] T} x+b_{4}^{[1]}, & a_{4}^{[1]}=\sigma\left(z_{4}^{[1]}\right) \end{array} z1[1]=w1[1]Tx+b1[1],z2[1]=w2[1]Tx+b2[1],z3[1]=w3[1]Tx+b3[1],z4[1]=w4[1]Tx+b4[1],a1[1]=σ(z1[1])a2[1]=σ(z2[1])a3[1]=σ(z3[1])a4[1]=σ(z4[1])
[ layer ] 上标表示第几层,下标表示该层的第几个节点。
在这里插入图片描述
在这里插入图片描述
输入一个样本的特征向量,四行代码计算出一个简单神经网络的输出,那么输入多个样本呢?请往下看。

4. 多样本向量化

  • 对于 m \mathrm{m} m 个样本, ( i ) (\mathrm{i}) (i) 表示第 i \mathrm{i} i 个样本
    z [ 1 ] ( i ) = W [ 1 ] ( i ) x ( i ) + b [ 1 ] ( i ) a [ 1 ] ( i ) = σ ( z [ 1 ] ( i ) ) z [ 2 ] ( i ) = W [ 2 ] ( i ) a [ 1 ] ( i ) + b [ 2 ] ( i ) a [ 2 ] ( i ) = σ ( z [ 2 ] ( i ) ) \begin{aligned} z^{[1](i)} &=W^{[1](i)} x^{(i)}+b^{[1](i)} \\ a^{[1](i)} &=\sigma\left(z^{[1](i)}\right) \\ z^{[2](i)} &=W^{[2](i)} a^{[1](i)}+b^{[2](i)} \\ a^{[2](i)} &=\sigma\left(z^{[2](i)}\right) \end{aligned} z[1](i)a[1](i)z[2](i)a[2](i)=W[1](i)x(i)+b[1](i)=σ(z[1](i))=W[2](i)a[1](i)+b[2](i)=σ(z[2](i))

  • 为了向量化计算,进行堆叠
    在这里插入图片描述
    注意:

  • 列向看,对应于不同的特征,就是神经网络中的该层的各个节点;

  • 行向看,对应于不同的训练样本。

5. 激活函数

在这里插入图片描述

tanh激活函数sigmoid的平移伸缩结果,其效果在所有场合都优于sigmoid,tanh几乎适合所有场合。例外是,二分类问题的输出层,想让结果介于 0,1之间,所以使用 sigmoid 激活函数。

tanh、 sigmoid两者的缺点:在特别大或者特别小 z z z 的情况下,导数的梯度或者函数的斜率会变得特别小,最后就会接近于0,导致降低梯度下降的速度


激活函数的选择经验

  • 如果输出是0、1值(二分类问题),输出层选择sigmoid函数,其它所有单元都选择Relu函数;

  • sigmoid函数需要进行浮点四则运算,在实践中,使用ReLu激活函数学习的更快;

  • 隐藏层通常会使用Relu激活函数。有时,也会使用tanh激活函数,但Relu的一个缺点是:当是负值的时候,导数等于0;

  • 另一个版本的Relu被称为Leaky Relu,当是负值时,这个函数的值不等于0,而是轻微的倾斜,这个函数通常比Relu激活函数效果要好,尽管在实际中Leaky ReLu使用的并不多。

6. 为什么需要非线性激活函数

线性隐藏层一点用也没有,因为线性函数的组合本身就是线性函数,所以除非你引入非线性,否则你无法计算出更有趣的函数,即使网络层数再多也不行。

  • 不能在隐藏层用线性激活函数,可以用ReLU、tanh、leaky ReLU或者其他的非线性激活函数;
  • 唯一可以用线性激活函数的通常就是输出层;在隐藏层使用线性激活函数非常少见。

7. 激活函数的导数

  • sigmoid
    在这里插入图片描述

  • tanh
    在这里插入图片描述

  • ReLu (Rectified Linear Unit)
    在这里插入图片描述
    z = 0 z=0 z=0 时,可以让导数为 0,或者 1。

  • Leaky ReLU (Leaky Linear Unit)
    在这里插入图片描述
    z = 0 z=0 z=0 时,可以让导数为 0.01,或者 1。

8.直观理解反向传播

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

9. 随机初始化

对于一个神经网络,如果你把权重或者参数都初始化为0,那么梯度下降将不会起作用,并且会存在神经单元的对称性问题,添加再多的神经单元也没有更好的效果。
在这里插入图片描述

  • 常数为什么是0.01,而不是100或者1000 ?因为如果w初始化很大的话,那么z就会很大,所以sigmoid/tanh 激活函数值就会趋向平坦的地方,而sigmoid/tanh 激活函数在很平坦的地方,学习非常慢。
  • 当你训练一个非常非常深的神经网络,你可能要试试0.01以外的常数。

这篇关于第一门课:神经网络和深度学习(第三周)——浅层神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/213566

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]