【夜莺监控方案】06-监控redis集群(prometheuse+n9e+redis_exporter)

2023-10-14 21:50

本文主要是介绍【夜莺监控方案】06-监控redis集群(prometheuse+n9e+redis_exporter),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 环境说明
  • 1. redis_exporter
  • 2. 配置prometheus
  • 3. n9e配置
    • 3.1 导入指标释义
    • 3.2 手动配置图表(方法一)
      • 配置方式使用n9e(建议)
      • 配置方式选择prometheus
      • 配置变量
    • 3.3 导入模板(方法二)
  • 【附录】
    • 使用Grafana

前言

  • 目前使用prometheus+n9e监控 redis。
  • 附录里写了之前用grafana+promethues监控rides的方法
  • 相关文档如下:
    《01-n9e-v5 部署-server》
    《01-n9e-v5部署-agent》
    《02-容器监控-cadvisor+n9e》
    《03-k8s集群监控(上)》
    《03-k8s集群监控(下)》
    《04-监控redis集群-prometheuse+n9e》

环境说明

服务器IP地址服务
监控服务器10.10.xxx.56prometheus/grafana
k8s-vip10.10.xxx.100redis集群

将redis_exporter部署在监控服务器上,对各环境redis进行监控。此处以监控k8s平台的redis集群为例。

1. redis_exporter

  • 创建redis_exporter目录,下边创建docker-compose.yml文件如下:
version: '2'
services:redis_exporter:image: harbocto.boe.com.cn/public/redis_exportercontainer_name: redis_exporterexpose:- "9121"ports:- "9121:9121"restart: alwayscommand: ["--redis.addr","redis://10.10.xxx.100:30020","--redis.password","1W23lyc45j","redis://10.10.xxx.100:30022","--redis.password","1W23lyc45j","redis://10.10.xxx.100:30024","--redis.password","1W23lyc45j"]

**【附】**如果你要在k8s上启动,注意k8s和docker-compose中 command的对镜像中ENTRYPOINT的覆盖方式是不同的,k8s需要如下写:

         command: ["/redis_exporter"]args: ["--redis.addr","redis://10.10.xxx.100:30020","--redis.password","1W23lyc45j","redis://10.10.xxx.100:30022","--redis.password","1W23lyc45j","redis://10.10.xxx.100:30024","--redis.password","1W23lyc45j"]
  • 启动
# docker-compose up -d
[root@monitor redis_exporter]# docker-compose psName                   Command               State           Ports
--------------------------------------------------------------------------------
redis_exporter   /redis_exporter --redis.ad ...   Up      0.0.0.0:9121->9121/tcp
  • 查看 redis_exporter数据
    如下图可见,exporter收集到了数据。
    image.png

2. 配置prometheus

  • 修改 prometheus.yml 文件,添加如下内容:
########################################
#             redis                    #
########################################- job_name: 'redis_exporter_targets'static_configs:- targets:- redis://10.10.xxx.100:30020- redis://10.10.xxx.100:30022- redis://10.10.xxx.100:30024metrics_path: /scraperelabel_configs:- source_labels: [__address__]target_label: __param_target- source_labels: [__param_target]target_label: instance- target_label: __address__replacement: 10.10.xxx.56:9121## config for scraping the exporter itself- job_name: 'redis_exporter'static_configs:- targets:- 10.10.xxx.56:9121
  • 重启prometheus

  • 查看

3. n9e配置

3.1 导入指标释义

  • 入口
    在这里插入图片描述
    导入指标释义文本如下:

我自己写的,有错误请指正
参考文档:redis官网相关文档

redis_active_defrag_running:活动碎片整理是否运行[lw]redis_allocator_active_bytes:分配器活动​​字节[lw]
redis_active_allocated_bytes:活动分配的字节[lw]
redis_assocator_frag_bytes:关联碎片字节[lw]
redis_allocator_frag_ratio:分配器碎片比率[lw]
redis_allocator_resident_bytes:分配器常驻字节[lw]
redis_allocator_rss_bytes:分配器RSS字节[lw]
redis_allocator_rss_ratio:分配器RSS比率[lw]redis_aof_current_rewrite_duration_sec:aof当前重写持续时间sec[lw]
redis_aof_enabled:是否启用aof[lw]
redis_aof_last_bgrewrite_status:最近一次AOF重写操作是否执行成功[lw]
redis_aof_last_cow_size_bytes:在执行AOF重写期间,分配给COW的大小[lw]
redis_aof_last_rewrite_duration_sec:最近一次AOF重写操作消耗的时间[lw]
redis_aof_last_write_status:aof上次写入状态[lw]
redis_aof_rewrite_in_progress:是否在进行AOF的重写操作[lw]
redis_aof_rewrite_scheduled:是否有AOF操作等待执行[lw]redis_blocked_clients:被阻止的客户[lw]redis_client_recent_max_input_buffer_bytes:客户端最近最大输入缓冲区字节[lw]
redis_client_recent_max_output_buffer_bytes:客户端最近最大输出缓冲区字节[lw]
redis_cluster_enabled:是否启用集群[lw]redis_commands_duration_seconds_total:命令持续时间总秒数[lw]
redis_commands_processed_total:命令处理总数[lw]
redis_commands_total:命令总数[lw]redis_config_maxclients:配置最大客户端[lw]
redis_config_maxmemory:配置最大内存[lw]redis_connected_clients:连接的客户[lw]
redis_connected_slave_lag_seconds:连接的从节点延迟秒[lw]
redis_connected_slave_offset_bytes:连接的从节点偏移字节[lw]
redis_connected_slaves:连接的从节点[lw]
redis_connections_received_total:收到的连接总数[lw]redis_cpu_sys_children_seconds_total:由后台进程消耗的系统CPU[lw]
redis_cpu_sys_seconds_total:由Redis服务器消耗的用户CPU[lw]
redis_cpu_user_children_seconds_total:由后台进程消耗的用户CPU[lw]
redis_cpu_user_seconds_total:由Redis服务消耗的用户CPU[lw]redis_db_avg_ttl_seconds:db平均ttl秒[lw]
redis_db_keys:数据库key的数量[lw]
redis_db_keys_expiring:即将过期的key[lw]redis_defrag_hits:碎片整理命中[lw]
redis_defrag_key_hits:碎片整理命中key[lw]
redis_defrag_key_misses:碎片整理未命中key[lw]
redis_evicted_keys_total:被驱逐的key总数[lw]redis_expired_keys_total:过期key总数[lw]
redis_expired_stale_percentage:过期陈旧key占百分比[lw]
redis_expired_time_cap_reached_total:已达到总时间上限[lw]redis_exporter_build_infor:redis_exporter信息[lw]
redis_exporter_last_scrape_connect_time_seconds:redis_exporter最后一次采集时间[lw]
redis_exporter_last_scrape_duration_seconds:redis_exporter次抓取持续时间秒[lw]
redis_exporter_last_scrape_error:redis_exporter次抓取错误[lw]
redis_exporter_scrape_duration_seconds_count:redis_exporter采集续时间秒数[lw]
redis_exporter_scrape_duration_seconds_sum:redis_exporter持续时间秒总和[lw]
redis_exporter_scrapes_total:redis_exporter抓取总数[lw]redis_instance_info:实例信息[lw]
redis_keyspace_hits_total:键空间命中总数[lw]
redis_keyspace_misses_total:键空间未命中总数[lw]redis_last_key_groups_scrape_duration_milliseconds:最后一个键组抓取持续时间毫秒[lw]
redis_last_slow_execution_duration_seconds:最后一个慢执行持续时间秒[lw]
redis_latest_fork_seconds:最新fork时间[lw]
redis_lazyfree_pending_objects:惰性删除或延迟释放的对象[lw]
redis_loading_dump_file:加载转储文件[lw]redis_master_last_io_seconds_ago:master最后io过去时间[lw]
redis_master_repl_offset:主节点累加偏移量(判断主从是否同步)[lw]
redis_master_sync_in_progress:正在进行主同步[lw]redis_mem_clients_normal:[lw]
redis_mem_clients_slaves:[lw]
redis_mem_fragmentation_bytes:内存碎片字节[lw]
redis_mem_fragmentation_ratio:内存碎片率[lw]
redis_mem_not_counted_for_eviction_bytes:内存不计入驱逐的字节数[lw]
redis_memory_max_bytes:内存最大字节[lw]
redis_memory_used_lua_bytes:lua脚本使用内存字节数[lw]
redis_memory_used_overhead_bytes:维护数据集的内部机制所需的内存开销[lw]
redis_memory_used_peak_bytes:内存使用峰值[lw]
redis_memory_used_rss_bytes:rss占用内存的字节数[lw]
redis_memory_used_scripts_bytes:脚本占用内存的字节数[lw]
redis_memory_used_startup_bytes:启动占用内存的字节数[lw]
redis_migrate_cached_sockets_total:[lw]
redis_net_input_bytes_total:网络input总数[lw]
redis_net_output_bytes_total:网络output总数[lw]
reids_process_id:进程号[lw]
redis_pubsub_channels:发布订阅频道[lw]
redis_pubsub_patterns:发布订阅模式[lw]redis_rdb_bgsave_in_progress:[lw]
redis_rdb_changes_since_last_save:自上次保存以来的rdb更改[lw]
redis_rdb_current_bgsave_duration_sec:rdb当前bgsave持续时间[lw]
redis_rdb_last_bgsave_duration_sec:rdb上次bgsave持续时间[lw]
redis_rdb_last_bgsave_status:rdb上次bgsave状态[lw]
redis_rdb_last_cow_size_bytes:rdb上次cow的大小[lw]
redis_rdb_last_save_timestamp_seconds:rdb最后保存时间戳[lw]redis_rejected_connections_total:拒绝的连接总数[lw]
redis_repl_backlog_first_byte_offset:复制起始偏移量[lw]
redis_repl_backlog_history_bytes:repl_backlog历史数据大小[lw]
redis_repl_backlog_is_active:repl_backlog是否开启[lw]
redis_replica_partial_resync_accepted:[lw]
redis_replica_partial_resync_denied:[lw]
redis_replica_resyncs_full:[lw]
redis_replication_backlog_bytes:[lw]
redis_second_repl_offset:[lw]
redis_slave_expires_tracked_keys:[lw]
redis_slave_info:从节点信息[lw]
redis_slave_priority:从节点优先级[lw]
redis_slave_repl_offset:从节点累加偏移量(判断主从是否同步)[lw]
redis_slowlog_last_id:慢查询日志最后一个的id[lw]
redis_slowlog_length:慢查询日志长度[lw]
redis_start_time_seconds:开始时间秒[lw]
redis_target_scrape_request_errors_total:[lw]
redis_up:运行时间[lw]
redis_uptime_in_seconds:正常运行时间[lw]

3.2 手动配置图表(方法一)

创建图表入口:
监控看图 > 监控大盘 > 新建大盘 > 新建大盘分组 > 新建图表

配置方式使用n9e(建议)

redis监控没有什么需要计算的,因此建议使用n9e方式监控,变量使用比prometheus方式灵活。

在这里插入图片描述

配置方式选择prometheus

变量可以根据需要定义

在这里插入图片描述

配置变量

在这里插入图片描述

3.3 导入模板(方法二)

在这里插入图片描述
模板内容如下:

[{"id": 0,"name": "redis监控","tags": "","configs": "{\"tags\":[{\"tagName\":\"cluster\",\"key\":\"job\",\"value\":\"redis_k8s_pub\",\"prefix\":false,\"metric\":\"redis_memory_used_bytes\"},{\"tagName\":\"node\",\"key\":\"instance\",\"value\":\"redis://10.10.239.100:30020\",\"prefix\":false,\"metric\":\"redis_memory_used_bytes\"}]}","chart_groups": [{"id": 0,"dashboard_id": 0,"name": "Default chart group","weight": 0,"charts": [{"id": 72,"group_id": 15,"configs": "{\"name\":\"客户端连接数\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"redis_connected_clients{job=\\\"$job\\\"}\"],\"layout\":{\"h\":2,\"w\":12,\"x\":0,\"y\":0,\"i\":\"0\"}}","weight": 0},{"id": 73,"group_id": 15,"configs": "{\"name\":\"占用内存大小\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"redis_memory_used_bytes{job=\\\"$job\\\"}\"],\"layout\":{\"h\":2,\"w\":12,\"x\":12,\"y\":0,\"i\":\"1\"}}","weight": 0},{"id": 74,"group_id": 15,"configs": "{\"name\":\"每分钟处理数据量\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"rate(redis_commands_processed_total{job=\\\"$job\\\"}[1m])\"],\"layout\":{\"h\":2,\"w\":12,\"x\":0,\"y\":2,\"i\":\"2\"}}","weight": 0},{"id": 75,"group_id": 15,"configs": "{\"name\":\"缓存命中率\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"redis_keyspace_hits_total{job=\\\"$job\\\"}/(redis_keyspace_hits_total{job=\\\"$job\\\"}+redis_keyspace_misses_total{job=\\\"$job\\\"})\"],\"layout\":{\"h\":2,\"w\":12,\"x\":12,\"y\":2,\"i\":\"3\"}}","weight": 0},{"id": 76,"group_id": 15,"configs": "{\"name\":\"网络IO\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"rate(redis_net_input_bytes_total{job=\\\"$job\\\"}[5m])\",\"rate(redis_net_output_bytes_total{job=\\\"$job\\\"}[5m])\"],\"layout\":{\"h\":2,\"w\":12,\"x\":0,\"y\":4,\"i\":\"4\"}}","weight": 0},{"id": 81,"group_id": 15,"configs": "{\"name\":\"1分钟5条执行最多命令的次数\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"topk(5, irate(redis_commands_total{job=\\\"$job\\\"} [1m]))\"],\"layout\":{\"h\":2,\"w\":12,\"x\":12,\"y\":4,\"i\":\"5\"}}","weight": 0},{"id": 83,"group_id": 15,"configs": "{\"name\":\"max_over_time\",\"mode\":\"prometheus\",\"link\":\"http://127.0.0.1:9090\",\"prome_ql\":[\"max(max_over_time(redis_uptime_in_seconds{job=\\\"$job\\\"}[5m]))\"],\"layout\":{\"h\":2,\"w\":12,\"x\":0,\"y\":6,\"i\":\"6\"}}","weight": 0}]},{"id": 0,"dashboard_id": 0,"name": "Key","weight": 1,"charts": [{"id": 271,"group_id": 108,"configs": "{\"name\":\"有效的key数量\",\"mode\":\"prometheus\",\"prome_ql\":[\"sum (redis_db_keys) - sum (redis_db_keys_expiring) \"],\"layout\":{\"h\":2,\"w\":8,\"x\":0,\"y\":0,\"i\":\"0\"}}","weight": 0},{"id": 272,"group_id": 108,"configs": "{\"name\":\"过期的key数量\",\"mode\":\"prometheus\",\"prome_ql\":[\"sum (redis_db_keys_expiring{job=\\\"$job\\\",instance=\\\"$instance\\\"}) \"],\"layout\":{\"h\":2,\"w\":8,\"x\":8,\"y\":0,\"i\":\"1\"}}","weight": 0},{"id": 273,"group_id": 108,"configs": "{\"name\":\"每个库里的key数量\",\"mode\":\"nightingale\",\"metric\":[\"redis_db_keys\"],\"tags\":{},\"layout\":{\"h\":2,\"w\":8,\"x\":16,\"y\":0,\"i\":\"2\"}}","weight": 0}]}]}
]

【附录】

使用Grafana

如果用不使用n9e,也可以使用grafana绘图,方法如下:

  • 模板
    我使用763 这个模板
    https://grafana.com/grafana/d
    ashboards/763

  • 添加到grafana
    (略)

  • 查看
    image.png


这篇关于【夜莺监控方案】06-监控redis集群(prometheuse+n9e+redis_exporter)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/213375

相关文章

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装

Python中操作Redis的常用方法小结

《Python中操作Redis的常用方法小结》这篇文章主要为大家详细介绍了Python中操作Redis的常用方法,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解一下... 目录安装Redis开启、关闭Redisredis数据结构redis-cli操作安装redis-py数据库连接和释放增

redis防止短信恶意调用的实现

《redis防止短信恶意调用的实现》本文主要介绍了在场景登录或注册接口中使用短信验证码时遇到的恶意调用问题,并通过使用Redis分布式锁来解决,具有一定的参考价值,感兴趣的可以了解一下... 目录1.场景2.排查3.解决方案3.1 Redis锁实现3.2 方法调用1.场景登录或注册接口中,使用短信验证码场

Redis 多规则限流和防重复提交方案实现小结

《Redis多规则限流和防重复提交方案实现小结》本文主要介绍了Redis多规则限流和防重复提交方案实现小结,包括使用String结构和Zset结构来记录用户IP的访问次数,具有一定的参考价值,感兴趣... 目录一:使用 String 结构记录固定时间段内某用户 IP 访问某接口的次数二:使用 Zset 进行

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结