【PyTorchTensorBoard实战】GPU与CPU的计算速度对比(附代码)

2023-10-14 18:52

本文主要是介绍【PyTorchTensorBoard实战】GPU与CPU的计算速度对比(附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 前言

按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。

本文基于PyTorch通过tensor点积所需要的时间来对比GPU与CPU的计算速度,并介绍tensorboard的使用方法。

我在前面的科普文章——GPU如何成为AI的加速器GPU如何成为AI的加速器_使者大牙的博客-CSDN博客GPU如何成为AI的加速器 解释了GPU的多核心架构相比CPU更适合简单大量的计算,而深度学习计算的底层算法就是大量矩阵的点积和相加,本文将通过张量的点积运算来说明:与CPU相比,GPU有多“适合”深度学习算法。

加法相比于点积的计算量太小了,我感觉体现不出GPU的优势,所以没有用加法来对比两者的算力差距。

1. 准备工作

1.0 一台有Nvidia独立显卡的电脑

既然要使用GPU计算,一台有Nvidia独立显卡=支持CUDA的GPU的电脑就是必须的前置条件。如果不清楚CUDA、GPU和Nvidia关系的同学,可以再看下我的文章:GPU如何成为AI的加速器_使者大牙的博客-CSDN博客

1.1 PyTorch

在PyTorch的官网:Start Locally | PyTorch 选择合适的版本:

这里需要注意的是PyTorch的CUDA版本需要匹配电脑的GPU的CUDA版本,一般来说电脑>PyTorch的CUDA版本就没问题了。

例如我安装的PyTorch是CUDA 11.8版本,我的GPU驱动版本是12.2(查看路径:Nvidia控制面板>帮助>系统信息)。

1.2 Tensorboard

Tensorboard是TensorFlow官方提供的一个可视化工具,用于可视化训练过程中的模型图、训练误差、准确率、训练后的模型参数等,同时还提供了交互式的界面,让用户可以更加方便、直观地观察和分析模型。

这里需要注意的是Tensorboard虽然是由TensorFlow提供的,但是使用Tensorboard不需要安装TensorFlow!只要在虚拟环境下安装TensorboardX和Tensorboard即可,我使用的是Anaconda Prompt:

pip install tensorboardX
pip install tensorboard

其使用方法为:

from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter("../logs")  #这里有两个"."writer.add_scalars(main_tag, tag_scalar_dict, global_step=None):writer.close()

另外需要注意SummaryWriter后面的路径要有两个“.”,这是因为我的代码文件在D:\DL\CUDA_test二级文件夹下面,我们需要把生成的tensorboard的event文件放在D:\DL\logs下面,而不是D:\DL\CUDA_test\logs路径下。这样做的理由是避免tensorboard报“No scalar data was found”

这里使用的是.add_scalars()方法来绘制多条曲线,参数如下:

  • main_tag:字符串类型,要绘制的曲线主标题,本实例为“GPU vs CPU”
  • tag_scalar_dict:字典类型,要绘制多条曲线的因变量,本实例为GPU和CPU的计算时间
    {'GPU':CUDA,'CPU':CPU}
  • global_step: 标量,要绘制多条曲线的因变量,本实例为张量的大小tensor_size

在event文件生成后再在PyCharm的终端输入 tensorboard --logdir=logs ,点击链接就可以在浏览器中查看生成的曲线了。

2. 对比GPU与CPU的计算速度

本文的实例问题非常简单:分别使用CPU和GPU对尺寸为[tensor_size, tensor_size]的2个张量进行点积运算,使用time库工具对计算过程进行计时,对比CPU和GPU所消耗的时间。张量的大小tensor_size取值从1到10000。

我使用的硬件信息如下:

CPU:AMD Ryzen 9 7940H

GPU:NVIDIA GeForce RTX 4060

CPU计算时间:

import torch
import timedef CPU_calc_time(tensor_size):a = torch.rand([tensor_size,tensor_size])b = torch.rand([tensor_size,tensor_size])start_time = time.time()torch.matmul(a,b)end_time = time.time()return end_time - start_time

GPU计算时间:

import torch
import timedef CUDA_calc_time(tensor_size):device = torch.device('cuda')a = torch.rand([tensor_size,tensor_size]).to(device)b = torch.rand([tensor_size,tensor_size]).to(device)start_time = time.time()torch.matmul(a,b).to(device)end_time = time.time()return end_time - start_time

3. 结果分析

最终生成的CPU和GPU计算张量点积的时间曲线如下:

从图中可以看出,随着张量尺寸的增大,CPU计算时间明显增加(0~11.3s),而GPU的计算时间基本不变(0.001s左右),张量尺寸越大GPU的计算优势就越明显。

4. 完整代码

import torch
import time
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdmtorch.manual_seed(1)def CPU_calc_time(tensor_size):a = torch.rand([tensor_size,tensor_size])b = torch.rand([tensor_size,tensor_size])start_time = time.time()torch.matmul(a,b)end_time = time.time()return end_time - start_timedef CUDA_calc_time(tensor_size):device = torch.device('cuda')a = torch.rand([tensor_size,tensor_size]).to(device)b = torch.rand([tensor_size,tensor_size]).to(device)start_time = time.time()torch.matmul(a,b).to(device)end_time = time.time()return end_time - start_timeif __name__ == "__main__":writer = SummaryWriter("../logs")for tensor_size in tqdm(range(1,10000,50)):CPU = CPU_calc_time(tensor_size)CUDA = CUDA_calc_time(tensor_size)writer.add_scalars('GPU vs CPU',{'GPU':CUDA,'CPU':CPU},tensor_size)writer.close()# Command Prompt   "tensorboard --logdir=logs"

这篇关于【PyTorchTensorBoard实战】GPU与CPU的计算速度对比(附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/212463

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2