hanlp源码解析word2vec词向量算法

2023-10-14 18:30

本文主要是介绍hanlp源码解析word2vec词向量算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注鄙人公众号,技术干货随时看!
在这里插入图片描述

one-hot表示法

词向量就是把一个词用向量的形式表示,以前的经典表示法是one-hot,这种表示法向量的维度是词汇量的大小。它的处理方式简单粗暴,一般就是统计词库包含的所有V个词,然后将这V个词固定好顺序,然后每个词就可以用一个V维的稀疏向量来表示,向量中只有在该词出现的位置的元素才为1,其它元素全为0。比如下面这几个词,第一个元素为1的表示中国,第六个元素为1的表示美国,第五个元素为1的表示日本。

中国[1,0,0,0,0,0,0,0,0,……,0,0,0,0,0,0,0]

美国[0,0,0,0,0,1,0,0,0,……,0,0,0,0,0,0,0]

日本[0,0,0,0,1,0,0,0,0,……,0,0,0,0,0,0,0]

按照目前汉语的词汇量20万左右,那么一个词就是20万维度的向量来表示,这对内存和计算效率都是灾难性的,优点是非常简单,只需过扫描一遍语料库好即可。

word2vec

google开源的word2vec得到的词的向量形式则可以自由控制维度,一般是100左右。google开源的是用c语言开发的,hanlp的作者移植了这套c代码并合并到了word2vec中。据说,每个线程每秒训练的词语稳定在180-190K,比原版C程序要快2.5倍左右;训练速度比C程序要快的原因是,原版C程序读取单词后需要去char数组里遍历查找id;而我的Java实现直接读取缓存文件中的id,当然开始训练前要先进行词->id的转换并输出到缓存文件,这个过程大约多花一两分钟时间,相较于训练时间,无疑是值得的。这样改进之后还可以直接读取类似text8那样的变态语料,一举多得。效率与c语言版的没有差别。

下面开始正式讨论hanlp中word2vec的源码。关计word2vec中用到的神经网络的模型和算法,这里不再赘述,请参考作者的文章http://www.hankcs.com/nlp/word2vec.html
 
 语料库

训库词向量当然需要一个相对完整的语料库,目有可以采用人民日报、Sighan05分词语料 http://sighan.cs.uchicago.edu/bakeoff2005/,一般情况下首先对语料库分词,这里不再讨论分词,为了讨论源码的方更的,我们采用的语料库如下(生产环境语料库越大越向量模型越准确):

帕勒莫 VS 梅西纳 已经 无关紧要 初盘 显示 格局 
雷吉纳 VS 尤文图斯 初盘 显示 客队 强大 关系到 客队 夺冠 问题 尤文图斯 任胆 
特雷维索 VS 乌迪内斯 乌迪内斯 客场 连续 拿下 状态 开出 平手 想必 乌鸡 势头 就此 中断 足彩 王智 德甲 解盘 
科隆 VS 比勒菲尔德 初盘 高开 意图 明显 庄家 筹码 上盘 嫌疑 极大 科隆 有望 不败 
拜仁 慕尼黑 VS 多特蒙德 多特蒙德 客场 至多 连赢 极限 盘也 有意 冷落 主队 
汉堡 VS 不莱梅 半球盘 本赛季 尚无 平局 记录 适合 选择 
杜伊斯堡 VS 美因兹 初盘 极为 不符 庄家 利用 主队 已经 降级 题材 美因兹 嫌疑 
沙尔克 VS 斯图加特 初盘 主队 水位 偏高 目前 斯图加特 客场 路有 反弹 迹象 排除 客队 可能 

训练完成的词向量文件如下所示:第一行是词向量的条数和维度。

15 20
VS 0.020013 0.022097 -0.019151 -0.016390 0.006833 0.015105 0.004704 0.001057 -0.018018 0.011092 -0.021782 0.006248 -0.003757 -0.004786 -0.016579 -0.009411 0.012897 0.015127 0.014845 0.007987
初盘 0.007693 -0.018967 -0.020466 0.024825 0.019040 0.015461 -0.003025 0.020149 -0.002462 0.003626 -0.000768 -0.014950 0.006504 -0.006674 -0.019058 0.023742 0.021883 -0.005529 -0.001090 0.002513
客队 -0.018188 -0.020036 0.022774 0.000315 -0.012912 -0.015211 -0.015382 0.008485 0.001007 0.006655 -0.021068 -0.019039 -0.000650 0.005718 0.012749 -0.015850 0.020398 0.004635 0.005598 -0.003042
客场 0.014932 -0.011439 -0.010487 0.010792 -0.003766 0.005154 0.009023 -0.020443 -0.009915 0.014568 0.021159 0.019660 -0.015234 -0.010538 -0.004546 0.010007 -0.018942 0.014989 0.013939 -0.007995
主队 -0.007750 -0.011236 0.021236 0.019609 -0.005778 0.021135 0.024224 0.009164 0.024857 -0.015614 -0.007675 -0.010631 -0.014663 0.014050 0.008034 0.002098 -0.011031 0.007467 0.015391 0.000876
已经 0.011419 -0.024740 0.021474 0.002454 -0.009068 -0.010289 -0.003746 -0.014546 -0.021767 -0.014196 0.021319 -0.008875 -0.013376 0.011613 -0.008489 0.023771 -0.007968 -0.022923 0.013644 -0.000344
显示 -0.017444 0.004879 0.007210 -0.002407 0.009122 -0.019788 0.004405 0.009083 -0.015045 0.000710 -0.000304 -0.011996 -0.014163 -0.023469 0.000114 0.000764 0.000049 -0.019669 -0.024809 -0.023733
尤文图斯 -0.021628 -0.002735 0.006956 0.005921 -0.015912 0.024990 -0.010057 -0.006368 -0.007022 0.023663 -0.018819 0.005805 -0.006677 0.015939 0.000203 0.021348 -0.014096 -0.013026 -0.020961 -0.018334
乌迪内斯 -0.015997 -0.015574 0.012221 -0.009335 0.013400 0.018450 0.006779 0.014753 0.012378 0.011703 -0.017754 -0.017165 -0.018283 -0.000660 0.020653 -0.013683 -0.015302 -0.020982 0.016530 -0.020895
科隆 -0.002896 0.010894 -0.023091 -0.022393 0.007214 0.017623 0.021321 0.010728 0.015811 -0.015638 -0.018202 0.019874 -0.013824 0.008767 0.002870 0.008952 -0.005911 0.000994 -0.008430 -0.005633
庄家 -0.022181 -0.016407 0.017515 0.005170 -0.011805 -0.007914 0.012580 -0.017677 -0.011669 0.023722 0.021310 -0.019916 0.004310 -0.011295 0.000681 0.015143 0.024270 0.009833 0.020564 0.015712
嫌疑 -0.001188 0.022385 0.012687 0.023688 -0.008521 0.023697 0.021633 -0.007123 -0.022107 0.024156 0.004487 -0.010408 -0.003606 -0.003700 -0.019260 -0.007152 -0.002211 -0.024650 -0.017598 -0.006039
多特蒙德 -0.004566 0.008701 0.004184 -0.002898 0.014885 0.007425 0.002952 0.018191 -0.005542 -0.007308 -0.002137 -0.013698 -0.015125 0.001091 0.021833 -0.006802 -0.000246 -0.020732 0.018738 -0.007649
美因兹 0.014931 -0.012285 -0.004318 0.000548 0.018110 -0.000446 0.022263 -0.003785 0.010456 -0.000800 -0.019446 0.021221 0.005188 -0.015099 0.015043 -0.020609 -0.021879 0.016274 -0.017079 -0.013266
斯图加特 0.017639 0.016427 0.003426 0.022617 0.024283 0.020275 0.008824 -0.021752 0.011444 -0.024461 -0.006432 0.007560 0.004904 -0.007624 0.014690 -0.023040 -0.007056 -0.006559 -0.008281 0.015354

模型训练第一步:加载语料库,统计词频,(只保留词频大于等于2的词)

 /*** 此函数功能完成词频统计* 每个词的相关信息存储在VocabWord中,word是对应的词,cn是在语料库中出现的次数,codelen是huffman编码的长度,code是huffman编码,point是对应的前置结点** @throws IOException*/public void learnVocab() throws IOException{vocab = new VocabWord[vocabMaxSize];vocabIndexMap = new TreeMap<String, Integer>();//此处作者是用TreeMap和数组相结合的形式来存储的,vocabIndexMap的key是word,value是对应vocab中的下标vocabSize = 0;final File trainFile = new File(config.getInputFile());BufferedReader raf = null;FileInputStream fileInputStream = null;cache = null;vocabSize = 0;TrainingCallback callback = config.getCallback();try{fileInputStream = new FileInputStream(trainFile);raf = new BufferedReader(new InputStreamReader(fileInputStream, encoding));cacheFile = File.createTempFile(String.format("corpus_%d", System.currentTimeMillis()), ".bin");cache = new DataOutputStream(new FileOutputStream(cacheFile));while (true){String word = readWord(raf);//读取一个词if (word == null && eoc) break;trainWords++;if (trainWords % 100000 == 0)//这段代码是打印进度的,不用管{if (callback == null){System.err.printf("=======%c%.2f%% %dK", 13,(1.f - fileInputStream.available() / (float) trainFile.length()) * 100.f,trainWords / 1000);System.err.flush();}else{callback.corpusLoading((1.f - fileInputStream.available() / (float) trainFile.length()) * 100.f);}}int idx = searchVocab(word);//查询下vocabIndexMap中有没有出现过,出现过就词步加1,没有出现过就加到map里面if (idx == -1){idx = addWordToVocab(word);vocab[idx].cn = 1;} else {vocab[idx].cn++;}if (vocabSize > VOCAB_MAX_SIZE * 0.7)//这段代码是当此词汇非常大时,移除低词频的词{reduceVocab();idx = searchVocab(word);}cache.writeInt(idx);}}finally{Utility.closeQuietly(fileInputStream);Utility.closeQuietly(raf);Utility.closeQuietly(cache);System.err.println();}if (callback == null){System.err.printf("%c100%% %dK", 13, trainWords / 1000);System.err.flush();}else{callback.corpusLoading(100);callback.corpusLoaded(vocabSize, trainWords, trainWords);}}

模型训练第二步:对词频排序,从大到小,实现原理很简单就是实现comparable接口

@Overridepublic int compareTo(VocabWord that){return that.cn - this.cn;}

模型训练第三步:构建huffman树

 void createBinaryTree(){int[] point = new int[VocabWord.MAX_CODE_LENGTH];char[] code = new char[VocabWord.MAX_CODE_LENGTH];int[] count = new int[vocabSize * 2 + 1];char[] binary = new char[vocabSize * 2 + 1];//存储huffman编码int[] parentNode = new int[vocabSize * 2 + 1];//一组数组存储huffman树for (int i = 0; i < vocabSize; i++)count[i] = vocab[i].cn;for (int i = vocabSize; i < vocabSize * 2; i++)count[i] = Integer.MAX_VALUE;int pos1 = vocabSize - 1;int pos2 = vocabSize;// Following algorithm constructs the Huffman tree by adding one node at a timeint min1i, min2i;for (int i = 0; i < vocabSize - 1; i++){// First, find two smallest nodes 'min1, min2'if (pos1 >= 0){if (count[pos1] < count[pos2]){min1i = pos1;pos1--;}else{min1i = pos2;pos2++;}}else{min1i = pos2;pos2++;}if (pos1 >= 0){if (count[pos1] < count[pos2]){min2i = pos1;pos1--;}else{min2i = pos2;pos2++;}}else{min2i = pos2;pos2++;}count[vocabSize + i] = count[min1i] + count[min2i];parentNode[min1i] = vocabSize + i;parentNode[min2i] = vocabSize + i;binary[min2i] = 1;}System.out.println(Arrays.toString(count));System.out.println(Arrays.toString(parentNode));System.out.println(Arrays.toString(binary));// Now assign binary code to each vocabulary wordfor (int j = 0; j < vocabSize; j++){int k = j;int i = 0;while (true){code[i] = binary[k];point[i] = k;i++;k = parentNode[k];if (k == vocabSize * 2 - 2) break;}vocab[j].codelen = i;vocab[j].point[0] = vocabSize - 2;for (k = 0; k < i; k++){vocab[j].code[i - k - 1] = code[k];vocab[j].point[i - k] = point[k] - vocabSize;}}System.out.println(Arrays.toString(vocab));}

这段代码看起来有点晕,因为词汇量很大,我画了张图,最终构建的huffman如下所示,下面所有的模型训练都是基于这张huffman图

这里写图片描述

最终的词汇表如下所示:

这里写图片描述

cbow模型训练:
待续!

这篇关于hanlp源码解析word2vec词向量算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/212330

相关文章

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

java中的HashSet与 == 和 equals的区别示例解析

《java中的HashSet与==和equals的区别示例解析》HashSet是Java中基于哈希表实现的集合类,特点包括:元素唯一、无序和可包含null,本文给大家介绍java中的HashSe... 目录什么是HashSetHashSet 的主要特点是HashSet 的常用方法hasSet存储为啥是无序的