python爬取boss直聘数据(selenium+xpath)

2023-10-14 17:30

本文主要是介绍python爬取boss直聘数据(selenium+xpath),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、主要目标
  • 二、开发环境
  • 三、selenium安装和驱动下载
  • 四、主要思路
  • 五、代码展示和说明
    • 1、导入相关库
    • 2、启动浏览器
    • 3、搜索框定位
    • 创建csv文件
    • 招聘页面数据解析(XPATH)
    • 总代码
    • 效果展示
  • 六、总结

一、主要目标

以boss直聘为目标网站,主要目的是爬取下图中的所有信息,并将爬取到的数据进行持久化存储。(可以存储到数据库中或进行数据可视化分析用web网页进行展示,这里我就以csv形式存在了本地)

在这里插入图片描述

二、开发环境

python3.8
pycharm
Firefox

三、selenium安装和驱动下载

环境安装: pip install selenium

版本对照表(火狐的)
https://firefox-source-docs.mozilla.org/testing/geckodriver/Support.html

浏览器驱动下载
https://registry.npmmirror.com/binary.html?path=geckodriver/

火狐浏览器下载
https://ftp.mozilla.org/pub/firefox/releases/

四、主要思路

  1. 利用selenium打开模拟浏览器,访问boss直聘首页(绕过cookie反爬)
  2. 定位搜索按钮输入某职位,点击搜索
  3. 在搜索结果页面,解析出现的职位信息,并保存
  4. 获取多个页面,可以定位跳转至下一页的按钮(但是这个跳转我一直没成功,于是我就将请求url写成了动态的,直接发送一个新的url来代替跳转)

五、代码展示和说明

1、导入相关库

# 用来将爬取到的数据以csv保存到本地
import csv
from time import sleep
# 使用selenium绕过cookie反爬
from selenium import webdriver
from selenium.webdriver.firefox.service import Service
from selenium.webdriver.common.by import By
# 使用xpath进行页面数据解析
from lxml import etree

2、启动浏览器

(有界面)

# 传入浏览器的驱动
ser = Service('./geckodriver.exe')
# 实例化一个浏览器对象
bro = webdriver.Firefox(service=ser)
# 设置隐式等待 超时时间设置为20s
bro.implicitly_wait(20)
# 让浏览器发起一个指定url请求
bro.get(urls[0])

(无界面)

# 1. 初始化配置无可视化界面对象
options = webdriver.FirefoxOptions()
# 2. 无界面模式
options.add_argument('-headless')
options.add_argument('--disable-gpu')# 让selenium规避被检测到的风险
options.add_argument('excludeSwitches')# 传入浏览器的驱动
ser = Service('./geckodriver.exe')# 实例化一个浏览器对象
bro = webdriver.Firefox(service=ser, options=options)# 设置隐式等待 超时时间设置为20s
bro.implicitly_wait(20)# 让浏览器发起一个指定url请求
bro.get(urls[0])

3、搜索框定位

进入浏览器,按F12进入开发者模式
在这里插入图片描述
然后分析下图可知,搜索框和搜索按钮都有唯一的class值
在这里插入图片描述
然后输入搜索内容,并跳转,代码如下

# 定位搜索框 .ipt-search
search_tag = bro.find_element(By.CSS_SELECTOR, value='.ipt-search')
# 输入搜索内容
search_tag.send_keys("")# 定位搜索按钮    .代表的是当前标签下的class
btn = bro.find_element(By.CSS_SELECTOR, value='.btn-search')
# 点击搜索按钮
btn.click()

创建csv文件

一开始编码为utf-8,但在本地打开内容是乱码,然后改成utf-8_sig就ok了

# f = open("boos直聘.csv", "w", encoding="utf-8", newline="")
f = open("boos直聘.csv", "w", encoding="utf-8_sig", newline="")
csv.writer(f).writerow(["职位", "位置", "薪资", "联系人", "经验", "公司名", "类型", "职位技能", "福利", "详情页"])

招聘页面数据解析(XPATH)

通过分析可知,招聘数据全在ul标签下的li标签中
在这里插入图片描述
我们要获取的信息有这些,接下来就要进入li标签中,一个一个去分析
在这里插入图片描述
其中职位名称在span标签中,而span标签的class有唯一的值job-name
其它数据分析方式和这个相同
在这里插入图片描述
数据解析代码如下

def parse():# 临时存放获取到的信息jobList = []# 提取信息page_text = bro.page_source# 将从互联网上获取的源码数据加载到tree对象中tree = etree.HTML(page_text)job = tree.xpath('//div[@class="search-job-result"]/ul/li')for i in job:# 职位job_name = i.xpath(".//span[@class='job-name']/text()")[0]# 位置jobArea = i.xpath(".//span[@class='job-area']/text()")[0]# 联系人linkman_list = i.xpath(".//div[@class='info-public']//text()")linkman = "·".join(linkman_list)# 详情页urldetail_url = prefix + i.xpath(".//h3[@class='company-name']/a/@href")[0]# print(detail_url)# 薪资salary = i.xpath(".//span[@class='salary']/text()")[0]# 经验job_lable_list = i.xpath(".//ul[@class='tag-list']//text()")job_lables = " ".join(job_lable_list)# 公司名company = i.xpath(".//h3[@class='company-name']/a/text()")[0]# 公司类型和人数等companyScale_list = i.xpath(".//div[@class='company-info']/ul//text()")companyScale = " ".join(companyScale_list)# 职位技能skill_list = i.xpath("./div[2]/ul//text()")skills = " ".join(skill_list)# 福利 如有全勤奖补贴等try:job_desc = i.xpath(".//div[@class='info-desc']/text()")[0]# print(type(info_desc))except:job_desc = ""# print(type(info_desc))# print(job_name, jobArea, salary, linkman, salaryScale, name, componyScale, tags, info_desc)# 将数据写入csvcsv.writer(f).writerow([job_name, jobArea, salary, linkman, job_lables, company, companyScale, skills, job_desc, detail_url])# 将数据存入数组中jobList.append({"jobName": job_name,"jobArea": jobArea,"salary": salary,"linkman": linkman,"jobLables": job_lables,"company": company,"companyScale": companyScale,"skills": skills,"job_desc": job_desc,"detailUrl": detail_url,})return {"jobList": jobList}

总代码

import csv
from time import sleep
from selenium import webdriver
from selenium.webdriver.firefox.service import Service
from selenium.webdriver.common.by import By
from lxml import etree# 指定url
urls = ['https://www.zhipin.com/', 'https://www.zhipin.com/web/geek/job?query={}&page={}']
prefix = 'https://www.zhipin.com'# 1. 初始化配置无可视化界面对象
options = webdriver.FirefoxOptions()
# 2. 无界面模式
options.add_argument('-headless')
options.add_argument('--disable-gpu')# 让selenium规避被检测到的风险
options.add_argument('excludeSwitches')# 传入浏览器的驱动
ser = Service('./geckodriver.exe')# 实例化一个浏览器对象
bro = webdriver.Firefox(service=ser, options=options)
# bro = webdriver.Firefox(service=ser# 设置隐式等待 超时时间设置为20s
# bro.implicitly_wait(20)# 让浏览器发起一个指定url请求
bro.get(urls[0])sleep(6)# 定位搜索框 .ipt-search
search_tag = bro.find_element(By.CSS_SELECTOR, value='.ipt-search')
# 输入搜索内容
search_tag.send_keys("")# 定位搜索按钮    .代表的是当前标签下的class
btn = bro.find_element(By.CSS_SELECTOR, value='.btn-search')
# 点击搜索按钮
btn.click()
sleep(15)# f = open("boos直聘.csv", "w", encoding="utf-8", newline="")
f = open("boos直聘.csv", "w", encoding="utf-8_sig", newline="")
csv.writer(f).writerow(["职位", "位置", "薪资", "联系人", "经验", "公司名", "类型", "职位技能", "福利", "详情页"])def parse():# 临时存放获取到的信息jobList = []# 提取信息page_text = bro.page_source# 将从互联网上获取的源码数据加载到tree对象中tree = etree.HTML(page_text)job = tree.xpath('//div[@class="search-job-result"]/ul/li')for i in job:# 职位job_name = i.xpath(".//span[@class='job-name']/text()")[0]# 位置jobArea = i.xpath(".//span[@class='job-area']/text()")[0]# 联系人linkman_list = i.xpath(".//div[@class='info-public']//text()")linkman = "·".join(linkman_list)# 详情页urldetail_url = prefix + i.xpath(".//h3[@class='company-name']/a/@href")[0]# print(detail_url)# 薪资salary = i.xpath(".//span[@class='salary']/text()")[0]# 经验job_lable_list = i.xpath(".//ul[@class='tag-list']//text()")job_lables = " ".join(job_lable_list)# 公司名company = i.xpath(".//h3[@class='company-name']/a/text()")[0]# 公司类型和人数等companyScale_list = i.xpath(".//div[@class='company-info']/ul//text()")companyScale = " ".join(companyScale_list)# 职位技能skill_list = i.xpath("./div[2]/ul//text()")skills = " ".join(skill_list)# 福利 如有全勤奖补贴等try:job_desc = i.xpath(".//div[@class='info-desc']/text()")[0]# print(type(info_desc))except:job_desc = ""# print(type(info_desc))# print(job_name, jobArea, salary, linkman, salaryScale, name, componyScale, tags, info_desc)# 将数据写入csvcsv.writer(f).writerow([job_name, jobArea, salary, linkman, job_lables, company, companyScale, skills, job_desc, detail_url])# 将数据存入数组中jobList.append({"jobName": job_name,"jobArea": jobArea,"salary": salary,"linkman": linkman,"jobLables": job_lables,"company": company,"companyScale": companyScale,"skills": skills,"job_desc": job_desc,"detailUrl": detail_url,})return {"jobList": jobList}if __name__ == '__main__':# 访问第一页jobList = parse()query = ""# 访问剩下的九页for i in range(2, 11):print(f"第{i}页")url = urls[1].format(query, i)bro.get(url)sleep(15)jobList = parse()# 关闭浏览器bro.quit()

效果展示

在这里插入图片描述

六、总结

不知道是boss反爬做的太好,还是我个人太菜(哭~)
我个人倾向于第二种
这个爬虫还有很多很多的不足之处,比如在页面加载的时候,boss的页面会多次加载(这里我很是不理解,我明明只访问了一次,但是他能加载好多次),这就导致是不是ip就会被封…
再比如,那个下一页的点击按钮,一直点不了,不知有没有路过的大佬指点一二(呜呜呜~)
在这里插入图片描述

# 下一页标签定位 ui-icon-arrow-right
next_tag = bro.find_element(By.CSS_SELECTOR, value='.ui-icon-arrow-right')
# action = ActionChains(bro)
# # 点击指定的标签
# action.click(next_tag).perform()
# sleep(0.1)
# # 释放动作链
# action.release().perform()

总之boss的信息爬取,我还是无法做到完全自动化😭

这篇关于python爬取boss直聘数据(selenium+xpath)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/212017

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as