Linux内核 eBPF基础:perf(2):perf性能管理单元PMU的注册

2023-10-14 06:58

本文主要是介绍Linux内核 eBPF基础:perf(2):perf性能管理单元PMU的注册,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Linux内核 eBPF基础
perf(2):性能管理单元PMU的注册


荣涛
2021年5月18日

  • 本文相关注释代码:https://github.com/Rtoax/linux-5.10.13
  • Linux内核性能架构:perf_event

1. perf类型

include\uapi\linux\perf_event.h中有:

/** attr.type*/
enum perf_type_id { /* perf 类型 */PERF_TYPE_HARDWARE			= 0,    /* 硬件 */PERF_TYPE_SOFTWARE			= 1,    /* 软件 */PERF_TYPE_TRACEPOINT		= 2,    /* 跟踪点 */PERF_TYPE_HW_CACHE			= 3,    /* 硬件cache */PERF_TYPE_RAW				= 4,    /* RAW */PERF_TYPE_BREAKPOINT		= 5,    /* 断点 */PERF_TYPE_MAX,				/* non-ABI */
};

他们是传入性能管理单元PMU注册函数perf_pmu_register的字段type。列出注册的PMU:

[rongtao@localhost src]$ grep -r "perf_pmu_register" | grep "\""
arch/x86/events/intel/bts.c:	return perf_pmu_register(&bts_pmu, "intel_bts", -1);
arch/x86/events/intel/pt.c:	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
arch/x86/events/amd/power.c:	ret = perf_pmu_register(&pmu_class, "power", -1);
arch/x86/events/core.c:	err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
arch/x86/events/msr.c:	perf_pmu_register(&pmu_msr, "msr", -1);
arch/x86/events/rapl.c:	ret = perf_pmu_register(&rapl_pmus->pmu, "power", -1);
kernel/events/hw_breakpoint.c:	perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
kernel/events/core.c:	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
kernel/events/core.c:	perf_pmu_register(&perf_kprobe, "kprobe", -1);
kernel/events/core.c:	perf_pmu_register(&perf_uprobe, "uprobe", -1);
kernel/events/core.c:	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);kernel/events/core.c:	perf_pmu_register(&perf_cpu_clock, NULL, -1);
kernel/events/core.c:	perf_pmu_register(&perf_task_clock, NULL, -1);

2. perf_pmu_register

int perf_pmu_register(struct pmu *pmu, const char *name, int type)

这里需要注意,函数perf_pmu_register是非常重要的注册函数,注册的pmu将加入全局链表pmus中:

static LIST_HEAD(pmus);

函数perf_pmu_register首先申请per-cpu变量:

pmu->pmu_disable_count = alloc_percpu(int);

接着,如果类型不是PERF_TYPE_SOFTWARE,将分配一个ID(前提是name没有设定,如perf_cpu_clock

if (type != PERF_TYPE_SOFTWARE) {if (type >= 0)max = type;/* 分配一个ID */ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);if (ret < 0)goto free_pdc;WARN_ON(type >= 0 && ret != type);type = ret;
}

然后,申请一个设备:

	if (pmu_bus_running/* perf_event_sysfs_init() 中被设置 为 1 */) {ret = pmu_dev_alloc(pmu);   /* 分配一个设备 device- /sys/devices/ */if (ret)goto free_idr;}

接下来这段代码表明,每个hw只能注册一次:

	if (pmu->task_ctx_nr == perf_hw_context) {static int hw_context_taken = 0;/** Other than systems with heterogeneous CPUs, it never makes* sense for two PMUs to share perf_hw_context. PMUs which are* uncore must use perf_invalid_context.*/if (WARN_ON_ONCE(hw_context_taken &&!(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))pmu->task_ctx_nr = perf_invalid_context;hw_context_taken = 1;}

否则,其将被设置为perf_invalid_context。然后为每个CPU分配上下文:

    pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);

紧接着,进行初始化:

	for_each_possible_cpu(cpu) {    /* 遍历 CPU */struct perf_cpu_context *cpuctx;cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);    /* 1.获取 CPU 的ctx */__perf_event_init_context(&cpuctx->ctx);            /* 2.初始化这个ctx */lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);/*3.初始化lockdep  */lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);cpuctx->ctx.pmu = pmu;                              /* 4.指向这个PMU */cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);/* 5.是否在线标记 */__perf_mux_hrtimer_init(cpuctx, cpu);               /* 6.高精度定时器,function=perf_mux_hrtimer_handler */cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);/*  */cpuctx->heap = cpuctx->heap_default;    /* 默认使用2个 */}

其中__perf_event_init_context初始化struct perf_event_context结构:

/** Initialize the perf_event context in a task_struct:*/
static void __perf_event_init_context(struct perf_event_context *ctx)   /* 初始化CPU ctx */
{raw_spin_lock_init(&ctx->lock);mutex_init(&ctx->mutex);INIT_LIST_HEAD(&ctx->active_ctx_list);perf_event_groups_init(&ctx->pinned_groups);perf_event_groups_init(&ctx->flexible_groups);INIT_LIST_HEAD(&ctx->event_list);INIT_LIST_HEAD(&ctx->pinned_active);INIT_LIST_HEAD(&ctx->flexible_active);refcount_set(&ctx->refcount, 1);
}

__perf_mux_hrtimer_init初始化一个高精度定时器,

static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)   /* 高精度定时器 */
{struct hrtimer *timer = &cpuctx->hrtimer;struct pmu *pmu = cpuctx->ctx.pmu;u64 interval;/* no multiplexing needed for SW PMU */if (pmu->task_ctx_nr == perf_sw_context)return;/** check default is sane, if not set then force to* default interval (1/tick)*/interval = pmu->hrtimer_interval_ms;if (interval < 1)interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; /* 小于1ms,就让他是 1ms */cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);raw_spin_lock_init(&cpuctx->hrtimer_lock);hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);timer->function = perf_mux_hrtimer_handler; /* 处理函数 */
}

需要注意一下几点:

  • 如果是软件上下文perf_sw_context,不创建定时器;
  • 如果ioctl设置的到期时间小于1ms,将其设置为1ms
  • 会调函数为perf_mux_hrtimer_handler

在获取到CPU上下文后,给没有初始化的PMU函数指针赋值:

    /*  */if (!pmu->start_txn) {if (pmu->pmu_enable) {/** If we have pmu_enable/pmu_disable calls, install* transaction stubs that use that to try and batch* hardware accesses.*/pmu->start_txn  = perf_pmu_start_txn;pmu->commit_txn = perf_pmu_commit_txn;pmu->cancel_txn = perf_pmu_cancel_txn;} else {pmu->start_txn  = perf_pmu_nop_txn;pmu->commit_txn = perf_pmu_nop_int;pmu->cancel_txn = perf_pmu_nop_void;}}/* 使能 */if (!pmu->pmu_enable) {pmu->pmu_enable  = perf_pmu_nop_void;pmu->pmu_disable = perf_pmu_nop_void;}/* 检测周期 ioctl(PERF_EVENT_IOC_PERIOD) */if (!pmu->check_period)pmu->check_period = perf_event_nop_int;/*  */if (!pmu->event_idx)pmu->event_idx = perf_event_idx_default;

下面是将这个PMU添加到pmus链表中:

	/** Ensure the TYPE_SOFTWARE PMUs are at the head of the list,* since these cannot be in the IDR. This way the linear search* is fast, provided a valid software event is provided.*/if (type == PERF_TYPE_SOFTWARE || !name)list_add_rcu(&pmu->entry, &pmus);   /* 软件 或者 name=NULL */elselist_add_tail_rcu(&pmu->entry, &pmus);/*  */

需要注意的是,软件类型的PMU将放到链表开头,以提高线性查询速度。

3. 例: software

//kernel/events/core.c
static struct pmu/* 性能监控单元 */ perf_swevent = {.task_ctx_nr	= perf_sw_context,.capabilities	= PERF_PMU_CAP_NO_NMI,.event_init	= perf_swevent_init,.add		= perf_swevent_add,.del		= perf_swevent_del,.start		= perf_swevent_start,.stop		= perf_swevent_stop,.read		= perf_swevent_read,
};perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);

3.1. perf_swevent_init

4. 例: perf_cpu_clock

//kernel/events/core.c
static struct pmu perf_cpu_clock = {.task_ctx_nr	= perf_sw_context,.capabilities	= PERF_PMU_CAP_NO_NMI,.event_init	= cpu_clock_event_init,.add		= cpu_clock_event_add,.del		= cpu_clock_event_del,.start		= cpu_clock_event_start,.stop		= cpu_clock_event_stop,.read		= cpu_clock_event_read,
};perf_pmu_register(&perf_cpu_clock, NULL, -1);

5. 例: perf_task_clock

//kernel/events/core.c
static struct pmu perf_task_clock = {.task_ctx_nr	= perf_sw_context,.capabilities	= PERF_PMU_CAP_NO_NMI,.event_init	= task_clock_event_init,.add		= task_clock_event_add,.del		= task_clock_event_del,.start		= task_clock_event_start,.stop		= task_clock_event_stop,.read		= task_clock_event_read,
};perf_pmu_register(&perf_task_clock, NULL, -1);

6. 例: kprobe

//kernel/events/core.c
static struct pmu perf_kprobe = {.task_ctx_nr	= perf_sw_context,.event_init	= perf_kprobe_event_init,.add		= perf_trace_add,.del		= perf_trace_del,.start		= perf_swevent_start,.stop		= perf_swevent_stop,.read		= perf_swevent_read,.attr_groups	= kprobe_attr_groups,
};perf_pmu_register(&perf_kprobe, "kprobe", -1);

7. 例: tracepoint

//kernel/events/core.c
static struct pmu perf_tracepoint = {.task_ctx_nr	= perf_sw_context,.event_init	= perf_tp_event_init,.add		= perf_trace_add,.del		= perf_trace_del,.start		= perf_swevent_start,.stop		= perf_swevent_stop,.read		= perf_swevent_read,
};perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);

8. pmu->event_init

perf_event_allocperf_init_eventperf_try_init_eventpmu->event_init(event);

而调用了perf_event_alloc的有:

  • perf_event_open
  • perf_event_create_kernel_counter
  • fork|clone
kernel_clonecopy_processperf_event_init_taskperf_event_init_contextinherit_task_groupinherit_groupinherit_eventperf_event_alloc

9. pmu->add

perf_event_enable_perf_event_enable__perf_event_enablectx_sched_inctx_flexible_sched_in|ctx_pinned_sched_inmerge_sched_ingroup_sched_inevent_sched_inevent->pmu->add(event, PERF_EF_START)

10. pmu->del

perf_event_disable_perf_event_disable__perf_event_disablegroup_sched_outevent_sched_outevent->pmu->del(event, 0);

11. pmu->start

12. pmu->stop

13. pmu->read

14. 相关链接

  • 注释源码:https://github.com/Rtoax/linux-5.10.13
  • Linux内核 eBPF基础:perf(1):perf_event在内核中的初始化
  • Linux内核 eBPF基础:perf(2):perf性能管理单元PMU的注册
  • Linux kernel perf architecture
  • Linux perf 1.1、perf_event内核框架
  • Linux内核性能架构:perf_event

这篇关于Linux内核 eBPF基础:perf(2):perf性能管理单元PMU的注册的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/208876

相关文章

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

linux hostname设置全过程

《linuxhostname设置全过程》:本文主要介绍linuxhostname设置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录查询hostname设置步骤其它相关点hostid/etc/hostsEDChina编程A工具license破解注意事项总结以RHE

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素