【机器视觉 + HALCON】 - 卡尺1D测量原理

2023-10-14 06:50

本文主要是介绍【机器视觉 + HALCON】 - 卡尺1D测量原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相比于计算机视觉领域使用深度学习方法而言,传统视觉方法虽然学习与编码成本很高,但是相较之下更为靠谱,每个操作都是可解释,可复现的。对于一些精度要求较高,样本很少且检测场景比较单一模板化的任务,使用传统视觉方法是非常有效的

本文简单介绍一下HALCON中1D卡尺测量原理,该部分也是传统视觉方法中最基础也是最重要的算法

HALCON Documentation: MVTec SoftwareFind detailed documentation and manuals for MVTec HALCON here. Reference Manual, Installation and Solution Guides, Release Notes and so on.https://www.mvtec.com/products/halcon/documentation

世界坐标是HALCON自身定义的参考坐标,可以把它定义在任何位置,然后其他对象都会基于该坐标系设置坐标。

1D边缘检测

首先用户需要自定义一个ROI(矩形、圆弧)在图中的位置,HALCON会建立等距的投影线垂直于测量线或弧线(也称为profile line),其长度等于 ROI 的宽度

然后,计算沿每条投影线的平均灰度值。 这些平均值的序列称为profile,其实也就是profile line上每一个点的值等于竖着的投影线上的平均灰度值。 如果投影线不是水平或垂直定向的,则必须对沿它们的像素值进行插值,比如bilinear、nearest_neighbor、bicubic。其中nearest最快,但精度很低,bicubic慢但是精度高

如图可以看到更宽的ROI得到的profile line噪声更少,不过如果需要测量的边缘不垂直于profile line,那么则必须选择较小的 ROI 宽度用于检测边缘

如下图,用高斯平滑滤波器对profile line进行平滑(图中的粗线),其中sigma取值越大,平滑效果越强,图像越平缓

细线则代表对应的导数,导数出现极值点的位置越有可能是边缘,直观上来说相邻的两块像素灰度值变化很大,则可以认为他们是边缘点,我们就可以通过设置threshold来截取边缘位置

值得注意的是,这种方法不适合测量例如弯曲边缘的位置。因为灰度值边缘与不会与profile line的交点重合。这种情况需要采用arc弧线用于检测

可视化检测结果

根据profile line上的6个波动点我们就能够得到6个可能是边缘的1D位置

gen_measure_rectangle2 (Row, Column, Phi, Length1, Length2, Width, Height, \
Interpolation, MeasureHandle)

但是根据结果可以看到,第三个边缘其实是我们不需要的,因此我们需要设置1D测量的过度策略

Transition配置,同时都可以添加_strongest选择变化最强的边。如果找到具有相同转换的多于一个的连续边缘,则将第一个边缘作为pair。但是这样可能会导致在阈值不是足够高的情况下,出现连续边缘间隔较远的情况(如图a)。对于这种情况,可以仅选择一个具有连续上升沿和下降沿的序列上的相应的最强边缘。例如“negative_strongest”。

  1.  negative 只返回从亮到暗的边 也就是去掉了左上角往下的第二根线
  2.  positive 只返回从暗到亮的边
  3.  all 返回所有的边

这篇关于【机器视觉 + HALCON】 - 卡尺1D测量原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/208834

相关文章

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L