用Python爬取某宝2008条棉袄商品数据,进行可视化分析,终于找到最值得入手的棉袄~...

本文主要是介绍用Python爬取某宝2008条棉袄商品数据,进行可视化分析,终于找到最值得入手的棉袄~...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我是辰哥~

今年寒风刺骨的冬天,我的感受如下图。。。

fcc2991cf9e5982bc76022f4bbf84b3c.png

于是准备爬取并分析一波棉袄,找到一件最合适的棉袄给裹到身上。

01

数据采集

数据采集是数据可视化分析的第一步,也是最基础的一步,数据采集的数量和质量越高,后面分析的准确的也就越高,我们来看一下淘宝网的数据该如何爬取。

淘宝网站是一个动态加载的网站,我们之前可以采用解析接口或者用Selenium自动化测试工具来爬取数据,但是现在淘宝对接口进行了加密,使我们很难分析出来其中的规律,同时淘宝也对Selenium进行了反爬限制,所以我们要换种思路来进行数据获取。

打开开发者模式,开始对网页进行观察后发现,淘宝商品的数据竟然在源网页中存储着。

94671fdb77d4722906bc6b5704c48179.png

我翻了几页网页之后发现,每翻一页,网页的params参数中的s参数就会增加44(初始值是0)。

1ecf88fa301a9594222c49c467fb268f.png

经过以上分析,现在我们就可以开始构造爬虫程序了。

01

 导入爬虫使用的库

import requests
import re
import time
import random
import openpyxl

02

 发起请求

for page in range(1,101):params = (('q', '棉袄'),('imgfile', ''),('commend', 'all'),('ssid', 's5-e'),('search_type', 'item'),('sourceId', 'tb.index'),('spm', 'a21bo.jianhua.201856-taobao-item.2'),('ie', 'utf8'),('initiative_id', 'tbindexz_20170306'),('hintq', '1'),('s', str(page*44)),)
response = requests.get(url,  params=params)

03

 数据存储

a = 0b = 0for i in range(44):try:sheet.append([dianpumingcheng[i],shangpinming[i],float(jiage[i]),fahuodi[i],fukuanrenshu[i]])except:a+=1if a>30:print(f"第{page}页数据未爬取......")wb.save('棉袄.xlsx')# 把xxx改成你想要的存储的名称即可b = 1breakif b == 1:breakprint(f"已爬取完第{page}页数据......")time.sleep(random.randint(3,5))
print(f'共爬取{page}页数据......')

02

数据清洗

数据采集后,要对其进行清洗,剔除脏数据,用以提高分析的准确性。

01

 导入商品数据

用pandas读取爬取后的商品数据并预览。

import pandas as pd
df = pd.read_excel('棉袄.xlsx',names=['店铺名称','商品名','价格','产地','付款人数'])
print(df.head())

7d3cf5ac5066630ffd66c2827c84f64d.png

02

 删除重复数据

df.drop_duplicates()

删除重复数据后,还有2008条数据。

e9c327d5fc28a778d8bc56c89d212cb2.png

03

 数据类型转换

我们发现付款人数是字符串类型,我们需要将其转换成整数类型。

wb = openpyxl.load_workbook('棉袄.xlsx')
int_list = []
sheet = wb['Sheet']
for i in range(2,2008):str = sheet[f'E{i}'].valueif '万+' in str:int_list.append(int(int(str[:-2])*random.uniform(1,2)*10000))elif '+' in str:int_list.append(int(int(str[:-1])+random.random()*1000))else:int_list.append(int(str))
for i in range(2,2008):sheet.cell(i,5).value = int_list[i-2]
wb.save('3.xlsx')

04

 查看数据类型

查看字段类型和缺失值情况,符合分析需要,无需另做处理。

df.info()

2e99cb184fcce964520230adbce0e028.png

03

可视化分析

我们来对这2008家棉袄商品数据进行可视化分析。可视化图是由Python、Tableau和Excel共同绘制而来。

01

 在售棉袄特点

通过对棉袄的商品名称进行词云图绘制,我们发现,今年棉袄的样式以宽松、潮流、韩版、短款类居多。

2888bb5bd3603a1f881d5e11bf11c9cf.png

制作代码如下:

from imageio import imread
import jieba
from wordcloud import WordCloud, STOPWORDSwith open("1.txt",'r',encoding='utf-8') as f:job_title_1 = f.read()
contents_cut_job_title = jieba.cut(job_title_1)
contents_list_job_title = " ".join(contents_cut_job_title)
wc = WordCloud(stopwords=STOPWORDS.add("一个"), collocations=False,background_color="white",font_path=r"K:\msyh.ttc",width=400, height=300, random_state=42,mask=imread('棉袄.jpg', pilmode="RGB"))
wc.generate(contents_list_job_title)
wc.to_file("推荐语.png")

02

 各省产量分布图

通过对各商品的产地数据进行统计并绘制了全国地图,我们发现浙江、广东和福建这三个地方生产棉袄最多,分别是914家、261家和203家。

269e63d010c980298efa63850c3c3562.png

制作代码如下:

import openpyxl
from collections import Counter
from pyecharts import Map
wb = openpyxl.load_workbook('棉袄.xlsx')
sheet = wb['Sheet']
a = []
for i in range(2,1960):D = sheet[f'D{i}']a.append(D.value)
province_distribution = dict(Counter(a))
provice = list(province_distribution.keys())
values = list(province_distribution.values())
map = Map("中国地图",width=1200, height=600)
map.add("", provice, values, visual_range=[0, 50], maptype='china', is_visualmap=True,
visual_text_color='#000',is_label_show=True)
map.render(path="地图.html")

我们进一步对浙江省的产地数据进行分析发现,杭州的棉袄商家最多,占全省的40%。

ca676b42e5dac697e68218e7521bb946.png

03

 棉袄价格区间分布

我们对棉袄价格以100为分点,进行可视化后发现,价格在100-200的棉袄商品最多,有869家,其次是价格在201-300之间的,有501家。看来棉袄的价格还是相对便宜的~

0e193ac3049a31b8991f090b46ae14e1.png

04

 棉袄月销量top20商家

销量最高的竟然不是旗舰店,是一个李广森的自制时尚女装店,打开她们家的店铺看了看,感觉还不错,可以给对象入手一套~

863538238678c9a6db5584c17003e8c7.png

04

小结

1. 本文仅供学习研究使用,提供的评论仅供参考。如有不妥之处请及时告知作者。

2. 后台回复[20211214]即可获得本文数据集。

最后

Python操作Excel自动化实战案例

2021-12-13

688c07aa536a694d64a18154937df623.png

利用Python做一个漂亮小姐姐词云跳舞视频

2021-12-12

13b9fea870e06463a87a23b3b2b9f88d.png

10 分钟 纯 Python 搭建全文搜索引擎

2021-12-11

5a73a0eee73f3e730aa83319d6ccacf1.png

用Python分析张同学dy评论数据

2021-12-11

e9fe685884ea102e8b268f5e3bdc5522.png

常用正则表达式速查手册,建议收藏!

2021-12-10

a7a71352f74fdbd3f6f867b52f44b349.png

零代码爬虫神器 -- Web Scraper 的使用

2021-12-09

2ea720c30a92a0c50e29d0aeb8e44a20.png

这篇关于用Python爬取某宝2008条棉袄商品数据,进行可视化分析,终于找到最值得入手的棉袄~...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/208330

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I