用Python爬取某宝2008条棉袄商品数据,进行可视化分析,终于找到最值得入手的棉袄~...

本文主要是介绍用Python爬取某宝2008条棉袄商品数据,进行可视化分析,终于找到最值得入手的棉袄~...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我是辰哥~

今年寒风刺骨的冬天,我的感受如下图。。。

fcc2991cf9e5982bc76022f4bbf84b3c.png

于是准备爬取并分析一波棉袄,找到一件最合适的棉袄给裹到身上。

01

数据采集

数据采集是数据可视化分析的第一步,也是最基础的一步,数据采集的数量和质量越高,后面分析的准确的也就越高,我们来看一下淘宝网的数据该如何爬取。

淘宝网站是一个动态加载的网站,我们之前可以采用解析接口或者用Selenium自动化测试工具来爬取数据,但是现在淘宝对接口进行了加密,使我们很难分析出来其中的规律,同时淘宝也对Selenium进行了反爬限制,所以我们要换种思路来进行数据获取。

打开开发者模式,开始对网页进行观察后发现,淘宝商品的数据竟然在源网页中存储着。

94671fdb77d4722906bc6b5704c48179.png

我翻了几页网页之后发现,每翻一页,网页的params参数中的s参数就会增加44(初始值是0)。

1ecf88fa301a9594222c49c467fb268f.png

经过以上分析,现在我们就可以开始构造爬虫程序了。

01

 导入爬虫使用的库

import requests
import re
import time
import random
import openpyxl

02

 发起请求

for page in range(1,101):params = (('q', '棉袄'),('imgfile', ''),('commend', 'all'),('ssid', 's5-e'),('search_type', 'item'),('sourceId', 'tb.index'),('spm', 'a21bo.jianhua.201856-taobao-item.2'),('ie', 'utf8'),('initiative_id', 'tbindexz_20170306'),('hintq', '1'),('s', str(page*44)),)
response = requests.get(url,  params=params)

03

 数据存储

a = 0b = 0for i in range(44):try:sheet.append([dianpumingcheng[i],shangpinming[i],float(jiage[i]),fahuodi[i],fukuanrenshu[i]])except:a+=1if a>30:print(f"第{page}页数据未爬取......")wb.save('棉袄.xlsx')# 把xxx改成你想要的存储的名称即可b = 1breakif b == 1:breakprint(f"已爬取完第{page}页数据......")time.sleep(random.randint(3,5))
print(f'共爬取{page}页数据......')

02

数据清洗

数据采集后,要对其进行清洗,剔除脏数据,用以提高分析的准确性。

01

 导入商品数据

用pandas读取爬取后的商品数据并预览。

import pandas as pd
df = pd.read_excel('棉袄.xlsx',names=['店铺名称','商品名','价格','产地','付款人数'])
print(df.head())

7d3cf5ac5066630ffd66c2827c84f64d.png

02

 删除重复数据

df.drop_duplicates()

删除重复数据后,还有2008条数据。

e9c327d5fc28a778d8bc56c89d212cb2.png

03

 数据类型转换

我们发现付款人数是字符串类型,我们需要将其转换成整数类型。

wb = openpyxl.load_workbook('棉袄.xlsx')
int_list = []
sheet = wb['Sheet']
for i in range(2,2008):str = sheet[f'E{i}'].valueif '万+' in str:int_list.append(int(int(str[:-2])*random.uniform(1,2)*10000))elif '+' in str:int_list.append(int(int(str[:-1])+random.random()*1000))else:int_list.append(int(str))
for i in range(2,2008):sheet.cell(i,5).value = int_list[i-2]
wb.save('3.xlsx')

04

 查看数据类型

查看字段类型和缺失值情况,符合分析需要,无需另做处理。

df.info()

2e99cb184fcce964520230adbce0e028.png

03

可视化分析

我们来对这2008家棉袄商品数据进行可视化分析。可视化图是由Python、Tableau和Excel共同绘制而来。

01

 在售棉袄特点

通过对棉袄的商品名称进行词云图绘制,我们发现,今年棉袄的样式以宽松、潮流、韩版、短款类居多。

2888bb5bd3603a1f881d5e11bf11c9cf.png

制作代码如下:

from imageio import imread
import jieba
from wordcloud import WordCloud, STOPWORDSwith open("1.txt",'r',encoding='utf-8') as f:job_title_1 = f.read()
contents_cut_job_title = jieba.cut(job_title_1)
contents_list_job_title = " ".join(contents_cut_job_title)
wc = WordCloud(stopwords=STOPWORDS.add("一个"), collocations=False,background_color="white",font_path=r"K:\msyh.ttc",width=400, height=300, random_state=42,mask=imread('棉袄.jpg', pilmode="RGB"))
wc.generate(contents_list_job_title)
wc.to_file("推荐语.png")

02

 各省产量分布图

通过对各商品的产地数据进行统计并绘制了全国地图,我们发现浙江、广东和福建这三个地方生产棉袄最多,分别是914家、261家和203家。

269e63d010c980298efa63850c3c3562.png

制作代码如下:

import openpyxl
from collections import Counter
from pyecharts import Map
wb = openpyxl.load_workbook('棉袄.xlsx')
sheet = wb['Sheet']
a = []
for i in range(2,1960):D = sheet[f'D{i}']a.append(D.value)
province_distribution = dict(Counter(a))
provice = list(province_distribution.keys())
values = list(province_distribution.values())
map = Map("中国地图",width=1200, height=600)
map.add("", provice, values, visual_range=[0, 50], maptype='china', is_visualmap=True,
visual_text_color='#000',is_label_show=True)
map.render(path="地图.html")

我们进一步对浙江省的产地数据进行分析发现,杭州的棉袄商家最多,占全省的40%。

ca676b42e5dac697e68218e7521bb946.png

03

 棉袄价格区间分布

我们对棉袄价格以100为分点,进行可视化后发现,价格在100-200的棉袄商品最多,有869家,其次是价格在201-300之间的,有501家。看来棉袄的价格还是相对便宜的~

0e193ac3049a31b8991f090b46ae14e1.png

04

 棉袄月销量top20商家

销量最高的竟然不是旗舰店,是一个李广森的自制时尚女装店,打开她们家的店铺看了看,感觉还不错,可以给对象入手一套~

863538238678c9a6db5584c17003e8c7.png

04

小结

1. 本文仅供学习研究使用,提供的评论仅供参考。如有不妥之处请及时告知作者。

2. 后台回复[20211214]即可获得本文数据集。

最后

Python操作Excel自动化实战案例

2021-12-13

688c07aa536a694d64a18154937df623.png

利用Python做一个漂亮小姐姐词云跳舞视频

2021-12-12

13b9fea870e06463a87a23b3b2b9f88d.png

10 分钟 纯 Python 搭建全文搜索引擎

2021-12-11

5a73a0eee73f3e730aa83319d6ccacf1.png

用Python分析张同学dy评论数据

2021-12-11

e9fe685884ea102e8b268f5e3bdc5522.png

常用正则表达式速查手册,建议收藏!

2021-12-10

a7a71352f74fdbd3f6f867b52f44b349.png

零代码爬虫神器 -- Web Scraper 的使用

2021-12-09

2ea720c30a92a0c50e29d0aeb8e44a20.png

这篇关于用Python爬取某宝2008条棉袄商品数据,进行可视化分析,终于找到最值得入手的棉袄~...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/208330

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了