Google Earth Engine(GEE)——全球红树林数据集

2023-10-14 02:50

本文主要是介绍Google Earth Engine(GEE)——全球红树林数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全球红树林观察
这项研究使用了日本宇宙航空研究开发机构(JAXA)1996年至2020年11个历时的L波段合成孔径雷达(SAR)全球马赛克数据集,以开发全球红树林范围和变化的长期时间序列。该研究采用了地图到图像的方法来检测变化,其中基线地图(GMW v2.5)使用阈值处理和背景红树林变化掩码进行更新。这种方法适用于所有图像-日期对,在每个纪元产生10张地图,这些地图被汇总以产生全球红树林时间序列。由此产生的红树林范围地图的估计准确率为87.4%(95th conf.int.:86.2-88.6%),尽管单个增益和损失变化类别的准确率较低,分别为58.1%(52.4-63.9%)和60.6%(56.1-64.8 %)。

误差的来源包括SAR马赛克数据集的错误登记,这只能被部分纠正,但也包括红树林的零散区域的混乱,如水产养殖池塘周围。总体而言,1996年确定的红树林面积为152,604平方公里(133,996-176,910),减少了-5,245平方公里(-13,587-3686),导致2020年的总面积为147,359平方公里(127,925-168,895),估计24年内损失3.4%。全球红树林观察3.0版代表了迄今为止全球红树林变化的最全面的记录,预计将支持一系列广泛的活动,包括对全球沿海环境的持续监测、确定和评估保护目标的进展、保护区规划和全球红树林生态系统的风险评估。

数据连接:

You can download the dataset here and read the paper here

免责声明:该数据集的全部或部分描述由作者或其作品提供。

预处理
栅格瓦片被打上了马赛克,这样所有的外延和相关的栅格都可以放入单个集合。日期范围后来被添加到栅格和矢量层中。

免责声明:该数据集的全部或部分描述由作者或其作品提供。

预处理
栅格瓦片被打上了马赛克,这样所有的外延和相关的栅格都可以放入单个集合。日期范围后来被添加到栅格和矢量层中。

引文:

Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, T.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J.; Rebelo, L-M. Global
Mangrove Extent Change 1996 – 2020: Global Mangrove Watch Version 3.0. Remote Sensing. 2022

数据集引文:

Bunting, Pete, Rosenqvist, Ake, Hilarides, Lammert, Lucas, Richard, Thomas, Nathan, Tadono , Takeo, Worthington, Thomas, Spalding , Mark, Murray,
Nicholas, & Rebelo, Lisa-Maria. (2022). Global Mangrove Watch (1996 - 2020) Version 3.0 Dataset (3.0) [Data set]. Zenodo. https://doi.org/10.5281/
zenodo.6894273

 

GEE代码

var extent_raster = ee.ImageCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/GMW_V3");
var extent_1996 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_1996_vec");
var extent_2007 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2007_vec");
var extent_2008 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2008_vec");
var extent_2009 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2009_vec");
var extent_2010 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2010_vec");
var extent_2015 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2015_vec");
var extent_2016 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2016_vec");
var extent_2017 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2017_vec");
var extent_2018 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2018_vec");
var extent_2019 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2019_vec");
var extent_2020 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/extent/gmw_v3_2020_vec");

自1996年的变化

var change_f1996_raster = ee.ImageCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/change_f1996");
var change_f1996_2007 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2007_vec");
var change_f1996_2008 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2008_vec");
var change_f1996_2009 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2009_vec");
var change_f1996_2010 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2010_vec");
var change_f1996_2015 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2015_vec");
var change_f1996_2016 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2016_vec");
var change_f1996_2017 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2017_vec");
var change_f1996_2018 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2018_vec");
var change_f1996_2019 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2019_vec");
var change_f1996_2020 = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/change/gmw_v3_f1996_t2020_vec");

合并的数据

var gmw_union_raster = ee.Image("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/union/gmw_v3_mng_union");
var gmw_union_vector = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/union/gmw_v3_union_vec");
var gmw_core_raster = ee.Image("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/core/gmw_v3_mng_core");
var gmw_core_vector = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/core/gmw_v3_core_vec");

Earth Engine Snippet: Tiles¶

var tiles = ee.FeatureCollection("projects/earthengine-legacy/assets/projects/sat-io/open-datasets/GMW/gmw_v3_tiles");

代码连接:https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:global-landuse-landcover/GLOBAL-MANGROVE-WATCH

Resolution: approx 30m

License & Usage¶

Attribution 4.0 International CC BY 4.0.

Curated in GEE by: Samapriya Roy

Keywords: Global, Mangrove, GMW, 1996, 2020

Last updated: 2022-09-16

前言 – 床长人工智能教程

这篇关于Google Earth Engine(GEE)——全球红树林数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/207632

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.