B站视频“多模态大模型,科大讯飞前NLP专家串讲”记录

2023-10-14 01:21

本文主要是介绍B站视频“多模态大模型,科大讯飞前NLP专家串讲”记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 多模态:
  • 对齐 -- align
  • 迁移学习和zero-shot
  • Clip
  • Blip

多模态:

图片、文字、视频、语音等不同的表征。
表示信息的方式有多种,但是不同的表示方式携带的信息不完全相同。
在这里插入图片描述

对齐 – align

如第一个图中,文字内容的描述和图片内容对应。
在这里插入图片描述
用不同单模态的模型将四种不同形式的”dog“表征成一个空间向量,可以发现虽然内容是同一个但是距离很远,所以想要用某种方式让四个点靠近一个点去,如果能变成一个点最好。

迁移学习和zero-shot

迁移学习:机器学习 – 首先在一个大数据集中跑模型,然后将预训练模型在自己的小数据集上进行微调。
在这里插入图片描述
zero-shot:通过学习类别之间的关系和属性,使得模型能够在没有见过的类别上进行准确的分类。
解决了传统机器学习中的一个重要问题,即在没有足够标记样本的情况下,如何对新类别的样本进行分类。传统的监督学习算法需要大量标记样本来训练模型,但在现实世界中,获取大量标记样本可能是困难、耗时和昂贵的。这种能力对于处理大规模、多类别的问题非常有用,可以扩展模型的应用范围和适应性。

Clip

在这里插入图片描述
左侧训练时,通过一个对角为1的标签方阵,在大量正向传播和反向传播时逼着image encoding和text encoding优化,使两个编码后的向量对齐。有两个问题:

  • 数据是没有经过处理的,可能有噪声,弱对齐
  • 比如文本描述的是dog,但是可能不只有一个图片含有dog,按理来说标签矩阵不应该只是对角线有1
    所以需要很大的数据集和很大的批次加速模型收敛。(该模型使用批次30000)

右侧使用时,对于 zero-shot 预测时,在分类中添加所有可能的类别,使用训练好的两个编码器,进行编码,计算相似度,即可预测出图像。

相对于以往模型的优点

  • 训练完之后不需要微调,直接使用两个编码器
  • 分类的类别加多少都可以,不像以往的分类只能在预测前确定好

作用:可以用文本推理图片,或者图片推理文本,图片搜图片,文本匹配文本
例如:1. 输入图片,匹配文字
在这里插入图片描述
2.文本匹配文本
在这里插入图片描述

Blip

既能完成图文匹配,又能完成文本生成。
在这里插入图片描述
第一个:图片编码后输入,经过类似于transform编码器结构输出词向量 --》相对齐的文本编码后经过类似于bert的双向编码注意力机制,经过feed forward (也是类似于transform的encoder)得到文本向量 --》 二者做对比学习,使两个编码器得到的向量对齐

第二个:与第一个相同的模块,中间加了一个 transform解码器中与编码器输出共同做注意力的模块,融合文本和图像的特征 --》 最后做二分类任务,此处的二分类需要输入的负样本较难(即与正样本难以区分),所以此处的负样本是在第一个中对比学习中分类分错的。输入到第二个中判断文本和图像是不是说的同一件事(二分类)。相对于第一个更细粒度。

第三个:掩码输入,结合图像特征生成下一个对于图像的描述的词。causal self-att 是一个单向的,类似于GPT。

在这里插入图片描述
可以对数据进行清洗, I I I代表图像, T T T代表文本, w w w表示在网上爬下来的数据,若监督的, h h h表示人工标注好的,正确匹配的, T s T_s Ts表示生成的文本。
弱监督和强监督传入模型进行训练,然后分为两个模型:
对于图文匹配的模型,将正对的文本对传入再进行训练,使模型更正确,然后将弱监督对传入,判断是不是匹配,如果不匹配,则抛弃。
对于文本生成模型,也将正确的样本传入进行再训练,然后对未知文本的图像进行生成文本,然后扔到匹配模型里判断是否匹配,如果不匹配则扔掉,最后的数据集里包括的则是原来的正确数据集和预测后的匹配图像文本对。
得到的就是清洗后的图像文本对。
在这里插入图片描述

这篇关于B站视频“多模态大模型,科大讯飞前NLP专家串讲”记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/207164

相关文章

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU