微软出品,166页深度解读,多模态GPT-4V

2023-10-13 22:01

本文主要是介绍微软出品,166页深度解读,多模态GPT-4V,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多模态王炸大模型GPT-4V,166页“说明书”重磅发布!而且还是微软团队出品。

什么样的论文,能写出166页?

不仅详细测评了GPT-4V在十大任务上的表现,从基础的图像识别、到复杂的逻辑推理都有展示;

还传授了一整套多模态大模型提示词使用技巧——

手把手教你从0到1学会写提示词,回答专业程度一看就懂,属实是把GPT-4V的使用门槛打到不存在了。

在这里插入图片描述

值得一提的是,这篇论文的作者也是“全华班”,7名作者全部是华人,领衔的是一位在微软工作了17年的女性首席研究经理。

在166页报告发布前,他们还参与了OpenAI最新DALL·E 3的研究,对这个领域了解颇深。

相比OpenAI的18页GPT-4V论文,这篇166页“食用指南”一发布,立刻被奉为GPT-4V用户必读之物:

在这里插入图片描述


有网友感慨:这哪里是论文,这简直快成一本166页的小书了。

在这里插入图片描述

还有网友看完已经感到慌了:

不要只看GPT-4V的回答细节,我真的对AI展现出来的潜在能力感到害怕。

在这里插入图片描述

所以,微软这篇“论文”究竟讲了啥,又展现出了GPT-4V的哪些“潜力”?

微软166页报告讲了啥?
这篇论文钻研GPT-4V的方法,核心就靠一个字——“试”。

微软研究员们设计了涵盖多个领域的一系列输入,将它们喂给GPT-4V,并观察和记录GPT-4V的输出。

随后,他们对GPT-4V完成各类任务的能力进行评估,还给出了使用GPT-4V的新提示词技巧,具体包括4大方面:

1、GPT-4V的用法:

5种使用方式:输入图像(images)、子图像(sub-images)、文本(texts)、场景文本(scene texts)和视觉指针(visual pointers)。

3种支持的能力:指令遵循(instruction following)、思维链(chain-of-thoughts)、上下文少样本学习(in-context few-shot learning)。

例如这是基于思维链变更提问方式后,GPT-4V展现出的指令遵循能力:

在这里插入图片描述


2、GPT-4V在10大任务中的表现:

开放世界视觉理解(open-world visual understanding)、视觉描述(visual description)、多模态知识(multimodal knowledge)、常识(commonsense)、场景文本理解(scene text understandin)、文档推理(document reasoning)、写代码(coding)、时间推理(temporal reasonin)、抽象推理(abstract reasoning)、情感理解(emotion understanding)

其中就包括这种,需要一些智商才能做出来的“图像推理题”:

在这里插入图片描述


3、类GPT-4V多模态大模型的提示词技巧:

提出了一种新的多模态提示词技巧“视觉参考提示”(visual referring prompting),可以通过直接编辑输入图像来指示感兴趣的任务,并结合其他提示词技巧使用。

在这里插入图片描述


4、多模态大模型的研究&落地潜力:

预测了多模态学习研究人员应该关注的2类领域,包括落地(潜在应用场景)和研究方向。

例如这是研究人员发现的GPT-4V可用场景之一——故障检测:

在这里插入图片描述


但无论是新的提示词技巧、还是GPT-4V的应用场景,大伙儿最关注的还是GPT-4V的真正实力。

在这里插入图片描述


所以,这份“说明书”随后用了150多页来展示各种demo,详细剧透了GPT-4V在面对不同回答时展现出的能力。

一起来看看GPT-4V如今的多模态能力进化到哪一步了。

精通专业领域图像,还能现学知识
图像识别
最基础的识别自然是不在话下,比如科技、体育界以及娱乐圈的各路名人:

在这里插入图片描述


而且不仅能看出这些人是谁,还能解读他们正在做什么,比如下图中老黄正在介绍英伟达新推出的显卡产品。

在这里插入图片描述


除了人物,地标建筑对于GPT-4V来说同样是小菜一碟,不仅能判断名称和所在地,还能给出详细的介绍。

在这里插入图片描述

​△左:纽约时代广场,右:京都金阁寺
不过越是有名的人和地点,判断起来也就越容易,所以要难度更大的图才能展现GPT-4V的能力。

比如医学影像,针对下面这张肺部CT,GPT-4V给出了这样的结论:

双肺多个区域存在实变和磨玻璃混浊,肺部可能存在感染或炎症。右肺上叶也可能有肿块或结节。

在这里插入图片描述

甚至不告诉GPT-4V影像的种类和位置,它自己也能判断。

这张图中,GPT-4V成功识别出了这是一张脑部的核磁共振(MRI)影像。

同时,GPT-4V还发现存在大量积液,认为很可能是高级别脑胶质瘤。

经过专业人士判断,GPT-4V给出的结论完全正确。


除了这些“正经”的内容之外,当代人类社会的“非物质文化遗产”表情包也被GPT-4V给拿捏了。


△机器翻译,仅供参考
不仅是解读表情包中的梗,真实世界中人类的表情所表达的情感也能被GPT-4看穿。

在这里插入图片描述


除了这些真·图像之外,文本识别也是机器视觉中的一项重要任务。

这方面,GPT-4V除了可以识别拉丁文字拼写的语言之外,中文、日文、希腊文等其他文字也都认识。

在这里插入图片描述


甚至是手写的数学公式:

在这里插入图片描述


图像推理
前面展示的DEMO,无论多么专业或多么难懂,都还停留在识别的范畴,但这只是GPT-4V技能的冰山一角。

除了看懂图片中的内容,GPT-4V还具有一定的推理能力。

简单一些的,GPT-4V可以发现两张图中的不同(虽然还有些错误)。

下面的一组图中,王冠和蝴蝶结的区别都被GPT-4V发现了。

在这里插入图片描述


如果加大难度,GPT-4V还能解决IQ测试当中的图形问题。

在这里插入图片描述
在这里插入图片描述


上面的这三道题中的特征或逻辑关系都还比较简单,但接下来就要上难度了:

当然难度不是在于图形本身,注意图中的第4条文字说明,原题目中图形的排列方式不是图中展示的样子。
在这里插入图片描述


图片标注
除了用文本回答各种问题,GPT-4V还可以在图片中执行一系列操作。

比如我们手里有一张四位AI巨头的合影,要GPT-4V框出其中的人物并标注他们的姓名和简介。

在这里插入图片描述


GPT-4V先是用文本回答了这些问题,紧接着便给出了处理之后的图片:

在这里插入图片描述


动态内容分析
除了这些静态内容,GPT-4V还能做动态分析,不过不是直接喂给模型一段视频。

下面的五张图是从一段制作寿司的教程视频中截取的,GPT-4V的任务是(在理解内容的基础上)推测这些图片出现的顺序。

在这里插入图片描述


而针对同一系列的图片,可能会有不同的理解方式,这是GPT-4V会结合文本提示进行判断。

比如下面的一组图中,人的动作究竟是开门还是关门,会导致排序结果截然相反。

在这里插入图片描述


当然,通过多张图片中人物状态的变化,还可以推测出他们正在做的事情。
在这里插入图片描述


甚至是预测接下来会发生什么:

在这里插入图片描述


“现场学习”
GPT-4V不仅视觉本领强,关键是还能现学现卖。

还是举个例子,让GPT-4V读汽车仪表盘,一开始得出的答案是错误的:

在这里插入图片描述


紧接着把方法用文字交给GPT-4V,但这是的答案依然不对:

在这里插入图片描述


然后又把例子展示给GPT-4V,答案倒是有样学样,可惜数字是胡编乱造出来的。
在这里插入图片描述


只有一个例子的确是有点少,不过随着样本数量的提高(其实只多了一个),终于功夫不负有心人,GPT-4V给出了正确答案。

在这里插入图片描述


GPT-4V的效果就展示这么多,当然它还支持更多的领域和任务,这里无法一一展示,感兴趣的话可以阅读原始报告。

那么,GPT-4V这些神器的效果背后,是怎样的一个团队呢?

清华校友领衔
这篇论文的作者一共有7位,均为华人,其中6位是核心作者。
在这里插入图片描述


项目领衔作者Lijuan Wang,是微软云计算与AI首席研究经理。

在这里插入图片描述


她本科毕业于华中科技大学,在中国清华大学获得博士学位,于2006年加入微软亚洲研究院,并于2016年加入位于雷德蒙德的微软研究院。

她的研究领域是基于多模态感知智能的深度学习和机器学习,具体又包括视觉语言模型预训练、图像字幕生成、目标检测等AI技术。

原文地址:
https://arxiv.org/abs/2309.17421

本文来源量子位,如有侵权请联系删除

这篇关于微软出品,166页深度解读,多模态GPT-4V的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/206153

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

SpringCloud负载均衡spring-cloud-starter-loadbalancer解读

《SpringCloud负载均衡spring-cloud-starter-loadbalancer解读》:本文主要介绍SpringCloud负载均衡spring-cloud-starter-loa... 目录简述主要特点使用负载均衡算法1. 轮询负载均衡策略(Round Robin)2. 随机负载均衡策略(

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

解读spring.factories文件配置详情

《解读spring.factories文件配置详情》:本文主要介绍解读spring.factories文件配置详情,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录使用场景作用内部原理机制SPI机制Spring Factories 实现原理用法及配置spring.f

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Linux中的进程间通信之匿名管道解读

《Linux中的进程间通信之匿名管道解读》:本文主要介绍Linux中的进程间通信之匿名管道解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基本概念二、管道1、温故知新2、实现方式3、匿名管道(一)管道中的四种情况(二)管道的特性总结一、基本概念我们知道多

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Linux系统之authconfig命令的使用解读

《Linux系统之authconfig命令的使用解读》authconfig是一个用于配置Linux系统身份验证和账户管理设置的命令行工具,主要用于RedHat系列的Linux发行版,它提供了一系列选项... 目录linux authconfig命令的使用基本语法常用选项示例总结Linux authconfi