nnunetv2训练报错 ValueError: mmap length is greater than file size

2023-10-13 21:20

本文主要是介绍nnunetv2训练报错 ValueError: mmap length is greater than file size,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 报错
  • 解决办法

报错


笔者在使用 nnunetv2 进行 KiTS19肾脏肿瘤分割实验的训练步骤中

使用 2d 和3d_lowres 训练都没有问题

nnUNetv2_train 40 2d 0
nnUNetv2_train 40 3d_lowres 0

但是使用 3d_cascade_fullres 和 3d_fullres 训练

nnUNetv2_train 40 3d_cascade_fullres 0
nnUNetv2_train 40 3d_fullres 0

都会报这个异常 ValueError: mmap length is greater than file size

具体报错内容如下:

root@autodl-container-fdb34f8e52-02177b7e:~# nnUNetv2_train 40 3d_cascade_fullres 0
Using device: cuda:0#######################################################################
Please cite the following paper when using nnU-Net:
Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
#######################################################################This is the configuration used by this training:
Configuration name: 3d_cascade_fullres{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [128, 128, 128], 'median_image_size_in_voxels': [525.5, 512.0, 512.0], 'spacing': [0.78126, 0.78125, 0.78125], 'normalization_schemes': ['CTNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True, 'inherits_from': '3d_fullres', 'previous_stage': '3d_lowres'}These are the global plan.json settings:{'dataset_name': 'Dataset040_KiTS', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.78125, 0.78125], 'original_median_shape_after_transp': [108, 512, 512], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [2, 0, 1], 'transpose_backward': [1, 2, 0], 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 3071.0, 'mean': 102.5714111328125, 'median': 103.0, 'min': -1015.0, 'percentile_00_5': -75.0, 'percentile_99_5': 295.0, 'std': 73.64986419677734}}}2023-10-13 17:22:36.747343: unpacking dataset...
2023-10-13 17:22:40.991390: unpacking done...
2023-10-13 17:22:40.992978: do_dummy_2d_data_aug: False
2023-10-13 17:22:40.997410: Using splits from existing split file: /root/autodl-tmp/nnUNet-master/dataset/nnUNet_preprocessed/Dataset040_KiTS/splits_final.json
2023-10-13 17:22:40.998125: The split file contains 5 splits.
2023-10-13 17:22:40.998262: Desired fold for training: 0
2023-10-13 17:22:40.998355: This split has 168 training and 42 validation cases.
/root/miniconda3/lib/python3.10/site-packages/torch/onnx/symbolic_helper.py:1513: UserWarning: ONNX export mode is set to TrainingMode.EVAL, but operator 'instance_norm' is set to train=True. Exporting with train=True.warnings.warn(
2023-10-13 17:22:45.383066:
2023-10-13 17:22:45.383146: Epoch 0
2023-10-13 17:22:45.383244: Current learning rate: 0.01
Exception in background worker 4:mmap length is greater than file size
Traceback (most recent call last):File "/root/miniconda3/lib/python3.10/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 53, in produceritem = next(data_loader)File "/root/miniconda3/lib/python3.10/site-packages/batchgenerators/dataloading/data_loader.py", line 126, in __next__return self.generate_train_batch()File "/root/autodl-tmp/nnUNet-master/nnunetv2/training/dataloading/data_loader_3d.py", line 19, in generate_train_batchdata, seg, properties = self._data.load_case(i)File "/root/autodl-tmp/nnUNet-master/nnunetv2/training/dataloading/nnunet_dataset.py", line 86, in load_casedata = np.load(entry['data_file'][:-4] + ".npy", 'r')File "/root/miniconda3/lib/python3.10/site-packages/numpy/lib/npyio.py", line 429, in loadreturn format.open_memmap(file, mode=mmap_mode,File "/root/miniconda3/lib/python3.10/site-packages/numpy/lib/format.py", line 937, in open_memmapmarray = numpy.memmap(filename, dtype=dtype, shape=shape, order=order,File "/root/miniconda3/lib/python3.10/site-packages/numpy/core/memmap.py", line 267, in __new__mm = mmap.mmap(fid.fileno(), bytes, access=acc, offset=start)
ValueError: mmap length is greater than file size
Exception in background worker 2:mmap length is greater than file size
Traceback (most recent call last):File "/root/miniconda3/lib/python3.10/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 53, in produceritem = next(data_loader)File "/root/miniconda3/lib/python3.10/site-packages/batchgenerators/dataloading/data_loader.py", line 126, in __next__return self.generate_train_batch()File "/root/autodl-tmp/nnUNet-master/nnunetv2/training/dataloading/data_loader_3d.py", line 19, in generate_train_batchdata, seg, properties = self._data.load_case(i)File "/root/autodl-tmp/nnUNet-master/nnunetv2/training/dataloading/nnunet_dataset.py", line 86, in load_casedata = np.load(entry['data_file'][:-4] + ".npy", 'r')File "/root/miniconda3/lib/python3.10/site-packages/numpy/lib/npyio.py", line 429, in loadreturn format.open_memmap(file, mode=mmap_mode,File "/root/miniconda3/lib/python3.10/site-packages/numpy/lib/format.py", line 937, in open_memmapmarray = numpy.memmap(filename, dtype=dtype, shape=shape, order=order,File "/root/miniconda3/lib/python3.10/site-packages/numpy/core/memmap.py", line 267, in __new__mm = mmap.mmap(fid.fileno(), bytes, access=acc, offset=start)
ValueError: mmap length is greater than file size
using pin_memory on device 0
Traceback (most recent call last):File "/root/miniconda3/bin/nnUNetv2_train", line 8, in <module>sys.exit(run_training_entry())File "/root/autodl-tmp/nnUNet-master/nnunetv2/run/run_training.py", line 268, in run_training_entryrun_training(args.dataset_name_or_id, args.configuration, args.fold, args.tr, args.p, args.pretrained_weights,File "/root/autodl-tmp/nnUNet-master/nnunetv2/run/run_training.py", line 204, in run_trainingnnunet_trainer.run_training()File "/root/autodl-tmp/nnUNet-master/nnunetv2/training/nnUNetTrainer/nnUNetTrainer.py", line 1237, in run_trainingtrain_outputs.append(self.train_step(next(self.dataloader_train)))File "/root/miniconda3/lib/python3.10/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 196, in __next__item = self.__get_next_item()File "/root/miniconda3/lib/python3.10/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 181, in __get_next_itemraise RuntimeError("One or more background workers are no longer alive. Exiting. Please check the "
RuntimeError: One or more background workers are no longer alive. Exiting. Please check the print statements above for the actual error message

解决办法


nnunet 作者给出的解决办法,详情请戳

在这里插入图片描述

进入指定文件夹中,执行

rm *.npy

这篇关于nnunetv2训练报错 ValueError: mmap length is greater than file size的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/205968

相关文章

解决SpringBoot启动报错:Failed to load property source from location 'classpath:/application.yml'

《解决SpringBoot启动报错:Failedtoloadpropertysourcefromlocationclasspath:/application.yml问题》这篇文章主要介绍... 目录在启动SpringBoot项目时报如下错误原因可能是1.yml中语法错误2.yml文件格式是GBK总结在启动S

idea maven编译报错Java heap space的解决方法

《ideamaven编译报错Javaheapspace的解决方法》这篇文章主要为大家详细介绍了ideamaven编译报错Javaheapspace的相关解决方法,文中的示例代码讲解详细,感兴趣的... 目录1.增加 Maven 编译的堆内存2. 增加 IntelliJ IDEA 的堆内存3. 优化 Mave

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

springboot报错Invalid bound statement (not found)的解决

《springboot报错Invalidboundstatement(notfound)的解决》本文主要介绍了springboot报错Invalidboundstatement(not... 目录一. 问题描述二.解决问题三. 添加配置项 四.其他的解决方案4.1 Mapper 接口与 XML 文件不匹配

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

SpringBoot项目启动报错"找不到或无法加载主类"的解决方法

《SpringBoot项目启动报错找不到或无法加载主类的解决方法》在使用IntelliJIDEA开发基于SpringBoot框架的Java程序时,可能会出现找不到或无法加载主类com.example.... 目录一、问题描述二、排查过程三、解决方案一、问题描述在使用 IntelliJ IDEA 开发基于

关于Docker Desktop的WSL报错问题解决办法

《关于DockerDesktop的WSL报错问题解决办法》:本文主要介绍关于DockerDesktop的WSL报错问题解决办法的相关资料,排查发现是因清理%temp%文件夹误删关键WSL文件,... 目录发现问题排查过程:解决方法其实很简单:重装之后再看就能够查到了:最后分享几个排查这类问题的小www.cp