基于pytorch使用一维卷积网络CNN的单特征的风速预测项目实战(适用于单特征预测问题)

本文主要是介绍基于pytorch使用一维卷积网络CNN的单特征的风速预测项目实战(适用于单特征预测问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、项目简介

本项目基于Pytorch使用一维卷积网络(CNN)实现时间序列(风速)的预测,只使用风速一个特征来预测风速,适用于单特征序列的预测问题,适用于初学预测的小伙伴。大部分代码参考多个网络上的代码,本人主要对整个项目分解到各个py文件中形成一个完整项目的基本框架,其他类似项目可以用这个框架进行修改,此外本人还对部分细节进行了修改,例如增加和修改了loss计算和相应的绘图,还增加了对pth文件的使用。

二、数据集

采用的是wind_dataset.csv,数据集时间、风速、降雨量等等参数,本项目只采用风速特征来预测未来一天的风速,即WIND这一列。数据展示如下

 三、我的实验环境

平台:window11
语言:python3.9
编译器:Pycharm
Pytorch:1.13.1+cu116

四、实验内容及文件说明

1、model.py

model.py定义了项目用到的网络模型,本项目用到的模型是三层的一维卷积网络,使用relu激活,全连接层输出预测结果。

 2、Config.py

 Config.py文件定义了项目所需要用到的所有参数,把这些参数统一整合到一个文件中,实现参数的统一管理。

 3、train.py

train.py是项目训练过程的通用代码,其他项目也可以在它的基础上修改后使用。

 4、DataSplit.py 数据划分

DataSplit.py 是实现数据划分的函数,通过滑动窗口,将每个timestep大小的数据作为训练数据,将其后面一个数据作为预测结果,再进行划分训练数据和标签,最后分成训练集和验证集

5、test_wind_CNN.py 训练文件

该py文件实现整体训练流程并做绘图操作。依次实现加载数据、数据标准化、取出WIND数据、划分训练集测试集、数据转化为Tensor、形成数据更迭器、载入模型、定义损失、定义优化器、开始训练、损失可视化、显示预测结果。

五、实验结果

以下实验结果展示的是epochs=80的训练过程,使用进度条展示训练过程

​训练完成后输出损失对比如图所示。


 选取200个点进行预测展示,其中蓝色是预测的数据,红色的实际的,第一张图是训练数据的预测效果,第二张图是测试集的训练效果。可以看出来,一些极端值的预测效果不太好。

六、总结及资源

此篇作为毕设笔记记录下来,若有朋友需要源码,可以关注OurTwenty公众号,回复【风速预测cnn】,即可获得。

这篇关于基于pytorch使用一维卷积网络CNN的单特征的风速预测项目实战(适用于单特征预测问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/205358

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置