【MATLAB第32期】【更新中】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理分类问题MATLAB代码实现

本文主要是介绍【MATLAB第32期】【更新中】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理分类问题MATLAB代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【MATLAB第32期】【更新中】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理分类问题MATLAB代码实现(持续更新)

本文敏感性分析主要分析分类问题(fisher、rf、arf、nca等)。

版本更新:

2023/8/2 增加基于拥挤距离和Pearson相关系数的IPCC方法(用SVM进行交叉验证分类预测评估)

clear all
warning('off','all');
tic;
load classdata  %导入数据
ContributeRate=0.9;
item=randperm(size(classdata,1));%数据打乱
classdata=classdata(item,:);% 数据打乱重组
xtrain=classdata(:,1:end-1);% 输入变量
ytrain=classdata(:,end);%输出标签
Nf=10;   %  选择特征数量 
[m,n]=size(xtrain); % m代表行  n代表列 %拥挤前保存原始xdata
Xdatasave=xtrain;%%0和1之间的归一化
xtrain= (xtrain-min(xtrain)) ./ (max(xtrain)-min(xtrain));%%--------拥挤阶段
%计算特征的拥挤/相关距离
crowdingDistance = IPCC(Xdatasave, ytrain);
%%--------对特征值进行排名
[res,ind]=sort(crowdingDistance,'descend');
%%--------选择最重要的特征
indfeat=ind(1:Nf);
%%-----------评估准确性
kfold=5;           %  交叉验证K值
Acc = Eval(xtrain(:,indfeat),ytrain,kfold);   %分类器评估

在这里插入图片描述

在这里插入图片描述

正确率=100%
总特征变量数量 = 21
筛选的特征变量数量= 1
筛选的特征变量编号为: 16  19  18   2  17   4   7  20  10   5  14   6   1

一、降维方法(分类)

常见的降维方法:
常见的敏感性分析法:

*(一).全局敏感性分析(sobol、蒙特卡洛方法)


(二).非全局敏感性分析
1.变量筛选(Fisher算法、临近成分分析NCA、RF随机森林、ARF自适应随机森林)

二、案例数据

案例数据classdata 3998×22 ,前21列为变量,第22列为标签,案例采用2分类,即[1,2],多分类也满足。
在这里插入图片描述

三、实际应用

(1)Fisher算法

%% 1.Fisher
addpath('D:特征排序\Fisher')
load classdata
ContributeRate=0.9;
id=randperm(size(classdata,1));%数据打乱
classdata=classdata(id,:);% 数据打乱重组
xtrain=classdata(:,1:end-1);% 输入变量
ytrain=classdata(:,end);%输出标签
[W] = Fisher_Score(xtrain,ytrain) ;
plot2

在这里插入图片描述
在这里插入图片描述

(2)近邻成分分析NCA(用于分类)

%% (2)近邻成分分析NCA(用于分类)
addpath('D:\特征排序\NCA')
load classdata
ContributeRate=0.9;
[xx,mdl]=myfscnca(xtrain,ytrain,0.9);
xnca=classdata(:,xx);

在这里插入图片描述
在这里插入图片描述

(3)临近成分分析NCA

%% (3)近邻成分分析NCA
addpath('D:\特征排序\NCA')
ContributeRate=0.9;
xtrain =data(:,1:end-1);
ytrain =data(:,end);
[xx,mdl]=myfsrnca(xtrain,ytrain,0.9);
xnca=data(:,xx);

(4)随机森林RF

%% (3)随机森林RF
addpath('D:\特征排序\RF')
load classdata
ContributeRate=0.9;
[XT,RFModel,w]= mycrf(classdata,ContributeRate);
xrf=classdata(:,XT);

在这里插入图片描述在这里插入图片描述

(5)自适应随机森林ARF

%% (4)自适应随机森林ARF
addpath('D:\小论文文件包最终版\基坑与算法文献\副业\特征排序\ARF')
load classdata
ContributeRate=0.9;
params.RFLeaf=[5,10,20,50,100,200,500]; %RFLeaf定义初始的叶子节点个数,这里设置了从5到500。
params.Maxepoch=500; % 选择叶子节点个数对应的最大训练步数
[XT,RFModel,w,params]= mycarf(classdata,ContributeRate,params);
xarf=classdata(:,XT);

在这里插入图片描述

nTree = 20;nLeaf = 5;
在这里插入图片描述
在这里插入图片描述

四、代码获取

私信回复‘32’即可获取下载链接。

这篇关于【MATLAB第32期】【更新中】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理分类问题MATLAB代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/203872

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

hdu1689(线段树成段更新)

两种操作:1、set区间[a,b]上数字为v;2、查询[ 1 , n ]上的sum 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdl

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象