【@胡锡进】大模型量化分析- 南京银行 601009.SH

2023-10-13 14:20

本文主要是介绍【@胡锡进】大模型量化分析- 南京银行 601009.SH,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对于股票价格的预测,以下是几种常见的方法:

  1. SARIMA模型:SARIMA(Seasonal Autoregressive Integrated Moving Average)模型适用于具有季节性变动的时间序列数据。它结合了ARIMA模型和季节性差分的方法来预测未来的价格。您可以使用Python中的statsmodels库来实现该模型。
  2. 简单移动平均线:简单移动平均线是基于过去一段时间内的平均价格来预测未来价格的方法。您可以根据您选择的时间窗口大小计算移动平均线,然后将其应用于未来的数据。
  3. 指数加权移动平均线:指数加权移动平均线是对简单移动平均线的改进,它给予过去的价格更高的权重。您可以通过使用pandas库中的ewm函数来计算指数加权移动平均线。
  4. Bollinger带:Bollinger带是通过计算股价的移动平均线和标准差来确定价格的高低水平。它可以提供价格波动的上下限,并用于预测未来价格的趋势。
  5. 相对强弱指标:相对强弱指标(RSI)是一种衡量市场买卖力量的指标。它可以根据股价的涨跌幅度来预测价格的超买超卖情况。
  6. 随机指标:随机指标(KDJ指标)是一种基于统计分析的股票技术指标,用于衡量股票价格的超买超卖情况,以及价格的趋势反转。
  7. 线性回归:线性回归是一种基本的统计模型,用于建立自变量和因变量之间的线性关系,并预测未来的价格。您可以使用scikit-learn库中的LinearRegression类来实现线性回归模型。
  8. 随机森林回归:随机森林是一种集成学习方法,它由多个决策树组成。您可以使用scikit-learn库中的RandomForestRegressor类来实现随机森林回归模型。
  9. 支持向量回归法:支持向量回归(SVR)是一种使用支持向量机算法进行回归分析的方法。它可以通过构建一个超平面来建立自变量和因变量之间的关系,并预测未来的价格。您可以使用scikit-learn库中的SVR类来实现SVR模型。
  10. 自回归移动平均法:自回归移动平均法(ARIMA)是一种常用的时间序列预测方法。它结合了自回归和移动平均的概念,用于预测未来的价格。

我将使用以下方法进行预测:SARIMA、简单移动平均线、指数加权移动平均线、Bollinger带、相对强弱指标、随机指标、线性回归、随机森林回归、支持向量回归法、自回归移动平均法、长短期记忆模型。我将逐一介绍每种方法,并提供相应的代码和预测价格。

  1. SARIMA(季节性差分整合自回归滑动平均模型):
    SARIMA是一种时间序列预测模型,适用于具有季节性模式的数据。首先,我们需要对数据进行平稳性检验和季节性差分处理。然后,通过AIC(赤池信息准则)选择最佳的SARIMA模型。最后,利用该模型进行未来3天的预测。

详细代码如下:

import pandas as pd
from statsmodels.tsa.statespace.sarimax import SARIMAX# 将数据转换为时间序列
df = pd.DataFrame(data)
df['date'] = pd.to_datetime(df['date'], format='%Y%m%d')
df.set_index('date', inplace=True)# 季节性差分
df_diff = df.diff(1).dropna()# 拟合SARIMA模型
model = SARIMAX(df_diff['close'], order=(1, 0, 1), seasonal_order=(0, 1, 1, 7))
result = model.fit()# 预测未来3天
forecast = result.get_forecast(steps=3)
predicted_close = forecast.predicted_mean# 输出预测价格
print(predicted_close)

预测结果如下:
2023-10-14 XXX
2023-10-15 XXX
2023-10-16 XXX

  1. 简单移动平均线:
    简单移动平均线是一种常见的趋势指标,通过计算一定时间窗口内的平均值来预测未来价格。我们将使用过去7天的数据计算移动平均线,并使用该线进行未来3天的预测。

详细代码如下:

# 计算移动平均线
window = 7
df['MA'] = df['close'].rolling(window).mean()# 预测未来3天
last_ma = df['MA'].iloc[-1]
predicted_close = [last_ma] * 3# 输出预测价格
print(predicted_close)

预测结果如下:
[XXX, XXX, XXX]

  1. 指数加权移动平均线:
    指数加权移动平均线是一种常用的平滑指标,可以捕捉到较短期和较长期的趋势。我们将使用过去7天的指数加权移动平均线进行未来3天的预测。

详细代码如下:

# 计算指数加权移动平均线
df['EMA'] = df['close'].ewm(span=window, adjust=False).mean()# 预测未来3天
last_ema = df['EMA'].iloc[-1]
predicted_close = [last_ema] * 3# 输出预测价格
print(predicted_close)

预测结果如下:
[XXX, XXX, XXX]

civilpy:Python数据分析及可视化实例目录

这篇关于【@胡锡进】大模型量化分析- 南京银行 601009.SH的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/203849

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入