『单调队列优化DP』[POI2014]ZAL-Freight

2023-10-13 12:32

本文主要是介绍『单调队列优化DP』[POI2014]ZAL-Freight,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

P r o b l e m \mathrm{Problem} Problem

Upper Bytown和Lower Bytown的火车站通过一条轨道铁路连接。

沿任何一个方向在它们之间行驶都需要s分钟。

但是,离开车站的火车必须至少间隔一分钟。

而且,在任何时候,铁路上的所有列车都必须朝同一方向行驶。

根据我们的时间表,前往下拜镇的n列货运列车将通过上拜镇。 他们将在下拜敦装载货物,然后返回上拜敦。 为简单起见,我们假设将货物装载到火车上几乎不需要时间。

我们将确定最后一班火车返回Upper Bytown的最短时间。


S o l u t i o n \mathrm{Solution} Solution

f i f_i fi表示第 i i i辆火车返回的最短时间。则有: f i = min ⁡ { max ⁡ ( a i , f j + i − j − 1 ) + i − j − 1 + 2 S } f_i= \min\{\max(a_i,f_j+i-j-1)+i-j-1+2S\} fi=min{max(ai,fj+ij1)+ij1+2S}

因此,我们的首要做法就是拆除 max ⁡ \max max函数。

  • f j − j ≥ a i − i + 1 f_j-j\ge a_i-i+1 fjjaii+1时,有: f i = ( f j − 2 j ) + 2 ( i + S − 1 ) f_i=(f_j-2j)+2(i+S-1) fi=(fj2j)+2(i+S1)
    此时我们使用单调队列维护 f j − 2 j f_j-2j fj2j的最小值即可。
  • f j − j < a i − i + 1 f_j-j<a_i-i+1 fjj<aii+1时,有: f i = ( a i + i + 2 S − 1 ) − j f_i=(a_i+i+2S-1)-j fi=(ai+i+2S1)j
    此时我们只要找到满足上述条件的下标最大值即可。

考虑如何解决后者,联系单调队列优化DP的性质:

  • 元素都是依次加入队列的。
  • 最新弹出的一定是下标最大的。

因此我们只需要用 q [ h e a d − 1 ] q[\mathrm{head}-1] q[head1]来更新答案即可。

小陷阱:为了保证 a i − i + 1 a_i-i+1 aii+1单调不下降,即“移动窗口”是有序向右移动的,我们遇见两个 a i a_i ai相同的时候,我们需要将第二个 a i a_i ai赋值为 a i + 1 a_i+1 ai+1,以保证单调队列的有序性。


C o d e \mathrm{Code} Code

#include <bits/stdc++.h>
#define int long longusing namespace std;
const int N = 2e6;int n, S;
int a[N], f[N], q[N];int read(void)
{int s = 0, w = 0; char c = getchar();while (c < '0' || c > '9') w |= c == '-', c = getchar();while (c >= '0' && c <= '9') s = s*10+c-48, c = getchar();return w ? -s : s;
}signed main(void)
{n = read(), S = read();memset(f,30,sizeof f); f[0] = 0;for (int i=1;i<=n;++i) a[i] = read();sort(a+1,a+n+1);int head = 1, tail = 1;for (int i=1;i<=n;++i) {#define updata(i,j) f[i] = min(max(f[j] + i - j - 1, a[i]) + i - j - 1 + 2 * S, f[i])while (head <= tail && f[q[head]] - q[head] < a[i] - i + 1) head ++;while(head <= tail && f[q[head]] - q[head] < a[i] - i + 1) head ++;if (head <= tail) updata(i, q[head]); updata(i, q[head-1]);while (head <= tail && f[q[tail]] - 2 * q[tail] >= f[i] - 2 * i) tail --;q[++tail] = i;}cout << f[n] << endl;return 0; 
} 

这篇关于『单调队列优化DP』[POI2014]ZAL-Freight的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/203252

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

hdu1180(广搜+优先队列)

此题要求最少到达目标点T的最短时间,所以我选择了广度优先搜索,并且要用到优先队列。 另外此题注意点较多,比如说可以在某个点停留,我wa了好多两次,就是因为忽略了这一点,然后参考了大神的思想,然后经过反复修改才AC的 这是我的代码 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]