YOLOX进行目标检测(东北大学钢材表面缺陷数据集)

2023-10-13 04:10

本文主要是介绍YOLOX进行目标检测(东北大学钢材表面缺陷数据集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLOX训练数据集(东北大学数据集)

参考博文添加链接描述

1. 版本配置

cuda:11.6     #nvidia-smi查看自己电脑支持的版本
Python:3.9
torch-1.12.0+cu116-cp39-cp39-win_amd64.whl #下载地址https://download.pytorch.org/whl/torch_stable.html
torchvision-0.13.0+cu116-cp39-cp39-win_amd64.whl #下载地址https://download.pytorch.org/whl/torch_stable.html

2.配置环境并验证

2.1 YOLOX源码下载地址

https://github.com/Megvii-BaseDetection/YOLOX

2.2 执行安装

pip install -r requirements.txt~~~~~~~~~~~~~~~~~~~~~~
#为支持Python3.9修改requirements.txt的onnx版本
onnx==1.9.0#执行安装
python setup.py install#安装apex,下载地址
https://github.com/NVIDIA/apex#下载完成后,解压后,在Shell里,进入到apex-master中执行安装命令
pip install -r requirements.txt   python setup.py install#安装pycocotools
pip install pycocotools#下载预训练模型放到根目录
https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth。#验证环境,执行
python tools/demo.py image -f exps/default/yolox_s.py -c ./yolox_s.pth
--path assets/dog.jpg --conf 0.3 --nms 0.65 --tsize 640 --save_result --device gpu

​ 测试结果
在这里插入图片描述


3.制作数据集

3.1下载数据集

按照测试集,训练集,验证集2:1:1的比例进行创建链接:https://pan.baidu.com/s/1BeLQswzExLJ1tQrlWBhUcA?pwd=x04j 
提取码:x04j

3.2转化为VOC2007数据集

新建data/VOCdevkit
将下载好的VOC2007数据集粘贴到此文件夹

4.训练自己的数据集


4.1 修改exps/example/yolox_voc/yolox_voc_s.py

  1. 本次使用的类别有6类,所以将num_classes修改为6。

修改num类别

  1. 修改文件路径,将data_dir修改为自己目录,删掉image_sets里面的2012

在这里插入图片描述

  1. 修改test路径,将data_dir修改为自己目录

在这里插入图片描述

4.2 打开yolox/data/datasets/voc_classes.py文件,修改为自己的类别名:

在这里插入图片描述

4.3 打开yolox/data/datasets/voc.py,去掉{}里的s,否则找不到文件路径

在这里插入图片描述

4.4 重新编译yolox

python setup.py install

4.5 命令行执行

python tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 1 -b 4 --fp16  -c yolox_s.pth

4.6 采用train.py文件执行

#修改批处理大小为4parser.add_argument("-b", "--batch-size", type=int, default=4, help="batch size")#修改设备数为1
parser.add_argument("-d", "--devices", default=1, type=int, help="device for training" )#修改训练的模型声明文件parser.add_argument("-f","--exp_file",default='exps/example/yolox_voc/yolox_voc_s.py',type=str,help="plz input your experiment description file",)#上次训练的结果,继续训练和fine turning时填写check point路径parser.add_argument("-c", "--ckpt", default='yolox_s.pth', type=str, help="checkpoint file")#训练时采用混合精度
parser.add_argument("--fp16",dest="fp16",default=True,action="store_true",help="Adopting mix precision training.",)

若在训练过程中终止,继续训练

#将其修改为True
parser.add_argument("--resume", default=True, action="store_true", help="resume training")#上次训练的结果
parser.add_argument(
"-c", "--ckpt", default='YOLOX_outputs/yolox_voc_s/best_ckpt.pth', type=str, help="checkpoint file"
)#修为自己想要开始的轮数
parser.add_argument(
"-e",
"--start_epoch",
default=None,
type=int,
help="resume training start epoch",
)

5.测试

5.1 修改参数

# 在yolox/data/datasets/__init__.py中导入“VOC_CLASSES”
from.voc_classes import VOC_CLASSES#修改tools/demo.py中代码,将“COCO_CLASSES”,改为“VOC_CLASSES”
from yolox.data.datasets import COCO_CLASSES,VOC_CLASSES#将“306”行的Predictor类初始化传入的“COCO_CLASSES”改为“VOC_CLASSES”predictor = Predictor(model, exp, VOC_CLASSES, trt_file, decoder,args.device, args.fp16, args.legacy,)

5.2 命令行测试

#重新执行编译
python setup.py install#命令行测试,在.assets文件夹下新建NEU文件夹,保存测试用例
python tools/demo.py image -f exps/example/yolox_voc/yolox_voc_s.py -c 
YOLOX_outputs/yolox_voc_s/latest_ckpt.pth --path ./assets/NEU --conf 0.3 --nms 0.65 --tsize 640 --save_result --device gpu

测试示例:

在这里插入图片描述

5.3 使用demo.py测试

#修改以下数据
parser.add_argument(
'-do', "--demo", default="image", help="demo type, eg. image, video and webcam"
)#修改测试路径
parser.add_argument(
"--path", default="./assets/NEU", help="path to images or video"
)#修改模型声明文件
parser.add_argument("-f","--exp_file",default="exps/example/yolox_voc/yolox_voc_s.py",type=str,help="please input your experiment description file",
)#修改训练结果路径
parser.add_argument("-c", "--ckpt", default="YOLOX_outputs/yolox_voc_s/best_ckpt.pth", 
type=str, help="ckpt for eval")#修改设备为gpu
parser.add_argument("--device",default="gpu",type=str,help="device to run our model, can either be cpu or gpu",
)#保存路径
parser.add_argument("--save_result",default='.YOLOX_outputs/yolox_voc_s/vis_res',action="store_true",help="whether to save the inference result of image/video",
)#修改nms和tsize
parser.add_argument("--nms", default=0.45, type=float, help="test nms threshold")
parser.add_argument("--tsize", default=640, type=int, help="test img size")

6.保存测试结果

打开yolox/utils.visualize.py文件,修改vis方法

#新增result_list数组
result_list = []#在color自变量前增加以下代码
class_name = class_names[cls_id]
one_line = (str(x0), str(y0), str(x1), str(y1), class_name, str(float(score)))
str_one_line = " ".join(one_line)
result_list.append(str_one_line)#增加返回值
return img,result_list

修改demo.py方法

#修改visual函数
#当未找到时
if output is None:result_list=['NO MATCH!']return img,result_list
#增加返回值
vis_res,result_list = vis(img, bboxes, scores, cls, cls_conf, self.cls_names)
return vis_res,result_list#在image_demo方法中修改
result_image,result_list = predictor.visual(outputs[0], img_info, predictor.confthre)
print(result_list)#写入文本文档save_file_name = os.path.join(save_folder, os.path.basename(image_name))logger.info("Saving detection result in {}".format(save_file_name))txt_name = os.path.splitext(save_file_name)[0] + ".txt"print(txt_name)f = open(txt_name, "w")for line in result_list:f.write(str(line) + '\n')f.close()cv2.imwrite(save_file_name, result_image)

文本文档:
在这里插入图片描述


遇到的一些BUG

No module named 'tensorboard'
#更新pip,进行对应包的安装
python -m pip install --upgrade pip
pip install tensorboard

在这里插入图片描述

搜索data_num_workers变量,在yolox_base.py文件中将其修改为0,重新编译执行

在这里插入图片描述

这篇关于YOLOX进行目标检测(东北大学钢材表面缺陷数据集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/200665

相关文章

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的