本文主要是介绍Python爬虫学习-第四篇 Scrapy框架抓取唯品会数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
上篇博文讲述了scrapy的框架和组件,对于scrapy有了基本的了解,那么我们进入今天的正题:使用Scrapy框架爬取数据。
1.创建Scrapy项目
创建Scrapy工程文件的命令:
scrapy startproject scrapytest
此命令是python默认目下创建的工程。
指定目录文件下创建项目:
1.进入指定目录 cd D:\workspaces 2.该目录下执行:scrapy startproject scrapytest
2.scrpay项目结构
使用PyCharm,打开scrpy的工程文件,效果如下:
2.1 spiders 文件夹就是我们编写spider存放的目录
2.2 items是定义数据类型
2.3 pipeline 负责处理被spider提取出来的item
2.4 Middlewares 默认两个中间件,一个spider 一个是download
2.5 setting 配置信息 默认:
3.抓取某品会的纸尿裤数据
3.1 定义数据
class DiaperItem(scrapy.Item):diaper_name = scrapy.Field() #纸尿裤商品名称diaper_price = scrapy.Field()#价格diaper_url = scrapy.Field() #详情路径diaper_source_shop = scrapy.Field() #来源商城(默认为某品会)
3.2 抓取目标分析
目标是抓取上图所有的纸尿裤数据。
3.2.1抓取页面代码
通过写spider直接访问路径:https://category.vip.com/suggest.php?keyword=纸尿裤
from scrapy.spiders import Spider
from scrapy.http.request import Requestclass vipShopSpider(Spider):name = "vipshopSpider"allowed_domains = ["category.vip.com"]start_url = 'https://category.vip.com/suggest.php?keyword=%E7%BA%B8%E5%B0%BF%E8%A3%A4'def start_requests(self):yield Request(url=self.start_url, callback=self.parse)def parse(self, response):body = response.body.decode('utf-8')pass
其中name就是爬虫的名称,必有字段
allowed_domains 允许爬去站点的域名,此域名内的访问才算有效。
start_url自定义参数,爬虫开始的爬去的页面路径。
start_request第一次请求,url请求页面路径,callback回调函数。
parse 自定义的方法,用于解析html ,主要爬取规则在这里实现。
通过pycharm 配置参数,调试爬虫,获取响应的内容body,用于我们第二次分析.
配置调试步骤:
填入python命令行路径 和执行scrapy的命令:crawl vipShopSpider
debug运行 ,设置断点,查看body:
复制body ,得到访问结果。经过分析,我们发现body没有商品的信息,得到是一段未经过js渲染的代码:
那该怎么办呢,我们用到与scrpy配套的js渲染中间件splash,通过这个splash,我们可以得到渲染后的body。
安装splash很简单,只需在docker环境 安装splash就可以了(这个不是此篇文章的重点)。具体百度。
splash安装成功后 界面如下:
setting配置splash:
SPLASH_URL = '你的splash的url'DOWNLOADER_MIDDLEWARES = {'scrapy_splash.SplashCookiesMiddleware': 723,'scrapy_splash.SplashMiddleware': 725,'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware': 810,
}SPIDER_MIDDLEWARES = {'scrapy_splash.SplashDeduplicateArgsMiddleware': 100,
}DUPEFILTER_CLASS = 'scrapy_splash.SplashAwareDupeFilter'HTTPCACHE_STORAGE = 'scrapy_splash.SplashAwareFSCacheStorage'
修改spider:
script = """function main(splash, args)splash:go(args.url)local scroll_to = splash:jsfunc("window.scrollTo")scroll_to(0, 2800)splash:set_viewport_full()splash:wait(5)return {html=splash:html()}end"""def start_requests(self):#yield Request(url=self.start_url, callback=self.parse)yield SplashRequest(url=self.start_url, callback=self.parse, endpoint='execute',args={'lua_source': self.script})
script的lua脚本,作用模拟拖动鼠标到页面最低端,保证页面把当前网页的数据加载完成。
再次debug运行爬虫,抓取body,查看最终的html代码。看到产品名称,价格信息。
3.2.2抓取规则
从html代码中获取到制定数据,selector(选择器)就在这时候大显身手,scapy选择器是依赖于lxml库,在我的博文《Python爬虫学习-第三篇 Scrapy框架初探和安装》提到过,所以在这儿我就不多讲,直接贴出我的筛选规则代码:
def parse(self, response):sel = Selector(response)items = sel.xpath('//div[@class="goods-list-item c-goods J_pro_items"]')for data in items:diaper_name = data.xpath('.//h4[@class="goods-info goods-title-info"]/a/@title').extract_first()diaper_price = data.xpath('.//div[@class="goods-price-wrapper"]/em/span[@class="price"]/text()').extract_first()diaper_url = data.xpath('.//h4[@class="goods-info goods-title-info"]/a/@href').extract_first()shop_diaper_item = DiaperItem()shop_diaper_item['diaper_name'] = diaper_nameshop_diaper_item['diaper_price'] = (re.findall(r"\d+\.?\d*", diaper_price))[0]shop_diaper_item['diaper_url'] = 'https:' + diaper_urlshop_diaper_item['diaper_source_shop'] = '唯品会'yield shop_diaper_itemnext_url = sel.xpath('//div[@class="m-cat-paging ui-paging"]/a[@class="cat-paging-next next"]/@href').extract_first()if next_url is not None:next_url = response.urljoin(next_url)yield SplashRequest(next_url, callback=self.parse, endpoint='execute', args={'lua_source': self.script})
第一步: sel = Selector(response)
items = sel.xpath('//div[@class="goods-list-item c-goods J_pro_items"]') 选取class是"goods-list-item c-goods J_pro_items"的元素
第二步:遍历选取的元素,找到名称、价格、详情url,赋值给自定义DiaperItem,返回DiaperItem
第三步:找取下一页:
next_url = sel.xpath(
'//div[@class="m-cat-paging ui-paging"]/a[@class="cat-paging-next next"]/@href').extract_first() 找取分页的下一页href。得到类似的结果:
判断是否为空,不为空,拼接成类似https://category.vip.com/suggest.php?keyword=纸尿裤&page=2&count=100&suggestType=brand#catPerPos的链接
在加入splash的渲染中间件,循环调取。
ps:scrapy 是默认开启了,url去重的访问,所以即使有重复url路径请求,scrapy会自动清除。
3.2.3保存数据
使用pipeline来处理数据,使用mssql数据库来存储数据:
from DiaperService.MssqlService import MssqlServiceclass DiaperPipeline(object):def process_item(self, item, spider):name = item['diaper_name'].replace("'", "''")ms = MssqlService(server='192.168.200.200', user='sa', password='123456aA', db_name='test')sql = 'insert into [dbo].[Diaper](Name,Price,DetailUrl,SourceShop) ' \'values(\'%s\',%f,\'%s\',\'%s\') ' % (name,float(item['diaper_price']),item['diaper_url'],item['diaper_source_shop'])# print(sql)ms.exec_non_query(sql)return item
封装的mssql服务:
import pymssqlclass MssqlService(object):def __init__(self, server, user, password, db_name):self.host = serverself.user = userself.password = passwordself.database = db_nameself.conn = self.__get_Conn()def __get_Conn(self):conn = pymssql.connect(self.host, self.user, self.password, self.database)return conndef exec_query(self, sql):cur = self.conn.cursor()cur.execute(sql)result_list = cur.fetchall()cur.close()return result_listdef exec_non_query(self, sql):cur = self.conn.cursor()cur.execute(sql)self.conn.commit()cur.close()
setting配置pipeline的优先级300:
ITEM_PIPELINES = {'Diaper.pipelines.DiaperPipeline': 300,
}
那么到现在我们已经把爬虫从请求网页,获取相应,解析内容,保存数据的都完成开发,所以我们运行下程序,查看是否成功抓取数据。
数据库中的数据:
4.总结
scrapy还有很多强大的功能去探索,比如链式爬虫,能够递归爬取数据,可以配置递归的层级等。同时它的选择器lxml库,筛选查询非常方便快速,相较于正则表达式学习成本更低,更易理解,能让新手快速入门。
这篇关于Python爬虫学习-第四篇 Scrapy框架抓取唯品会数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!