Python爬虫学习-第四篇 Scrapy框架抓取唯品会数据

2023-10-12 23:50

本文主要是介绍Python爬虫学习-第四篇 Scrapy框架抓取唯品会数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上篇博文讲述了scrapy的框架和组件,对于scrapy有了基本的了解,那么我们进入今天的正题:使用Scrapy框架爬取数据。

1.创建Scrapy项目

创建Scrapy工程文件的命令:

 scrapy startproject scrapytest

  此命令是python默认目下创建的工程。

指定目录文件下创建项目:

1.进入指定目录  cd D:\workspaces 2.该目录下执行:scrapy startproject scrapytest 

2.scrpay项目结构

 使用PyCharm,打开scrpy的工程文件,效果如下:

2.1 spiders 文件夹就是我们编写spider存放的目录

2.2 items是定义数据类型

2.3 pipeline 负责处理被spider提取出来的item

2.4 Middlewares 默认两个中间件,一个spider 一个是download

2.5 setting 配置信息 默认:

 3.抓取某品会的纸尿裤数据

     3.1 定义数据

class DiaperItem(scrapy.Item):diaper_name = scrapy.Field() #纸尿裤商品名称diaper_price = scrapy.Field()#价格diaper_url = scrapy.Field()  #详情路径diaper_source_shop = scrapy.Field() #来源商城(默认为某品会)

   3.2 抓取目标分析

 

 

 

  目标是抓取上图所有的纸尿裤数据。

        3.2.1抓取页面代码

       通过写spider直接访问路径:https://category.vip.com/suggest.php?keyword=纸尿裤

from scrapy.spiders import Spider
from scrapy.http.request import Requestclass vipShopSpider(Spider):name = "vipshopSpider"allowed_domains = ["category.vip.com"]start_url = 'https://category.vip.com/suggest.php?keyword=%E7%BA%B8%E5%B0%BF%E8%A3%A4'def start_requests(self):yield Request(url=self.start_url, callback=self.parse)def parse(self, response):body = response.body.decode('utf-8')pass

其中name就是爬虫的名称,必有字段

allowed_domains 允许爬去站点的域名,此域名内的访问才算有效。

start_url自定义参数,爬虫开始的爬去的页面路径。

start_request第一次请求,url请求页面路径,callback回调函数。

parse 自定义的方法,用于解析html ,主要爬取规则在这里实现。

通过pycharm 配置参数,调试爬虫,获取响应的内容body,用于我们第二次分析.

配置调试步骤:

填入python命令行路径  和执行scrapy的命令:crawl  vipShopSpider

debug运行 ,设置断点,查看body:

复制body ,得到访问结果。经过分析,我们发现body没有商品的信息,得到是一段未经过js渲染的代码:

  那该怎么办呢,我们用到与scrpy配套的js渲染中间件splash,通过这个splash,我们可以得到渲染后的body。

 安装splash很简单,只需在docker环境 安装splash就可以了(这个不是此篇文章的重点)。具体百度。

 splash安装成功后 界面如下:

 

 setting配置splash:

SPLASH_URL = '你的splash的url'DOWNLOADER_MIDDLEWARES = {'scrapy_splash.SplashCookiesMiddleware': 723,'scrapy_splash.SplashMiddleware': 725,'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware': 810,
}SPIDER_MIDDLEWARES = {'scrapy_splash.SplashDeduplicateArgsMiddleware': 100,
}DUPEFILTER_CLASS = 'scrapy_splash.SplashAwareDupeFilter'HTTPCACHE_STORAGE = 'scrapy_splash.SplashAwareFSCacheStorage'

修改spider:

  script = """function main(splash, args)splash:go(args.url)local scroll_to = splash:jsfunc("window.scrollTo")scroll_to(0, 2800)splash:set_viewport_full()splash:wait(5)return {html=splash:html()}end"""def start_requests(self):#yield Request(url=self.start_url, callback=self.parse)yield SplashRequest(url=self.start_url, callback=self.parse, endpoint='execute',args={'lua_source': self.script})

script的lua脚本,作用模拟拖动鼠标到页面最低端,保证页面把当前网页的数据加载完成。

再次debug运行爬虫,抓取body,查看最终的html代码。看到产品名称,价格信息。

    3.2.2抓取规则

     从html代码中获取到制定数据,selector(选择器)就在这时候大显身手,scapy选择器是依赖于lxml库,在我的博文《Python爬虫学习-第三篇 Scrapy框架初探和安装》提到过,所以在这儿我就不多讲,直接贴出我的筛选规则代码:

  def parse(self, response):sel = Selector(response)items = sel.xpath('//div[@class="goods-list-item  c-goods  J_pro_items"]')for data in items:diaper_name = data.xpath('.//h4[@class="goods-info goods-title-info"]/a/@title').extract_first()diaper_price = data.xpath('.//div[@class="goods-price-wrapper"]/em/span[@class="price"]/text()').extract_first()diaper_url = data.xpath('.//h4[@class="goods-info goods-title-info"]/a/@href').extract_first()shop_diaper_item = DiaperItem()shop_diaper_item['diaper_name'] = diaper_nameshop_diaper_item['diaper_price'] = (re.findall(r"\d+\.?\d*", diaper_price))[0]shop_diaper_item['diaper_url'] = 'https:' + diaper_urlshop_diaper_item['diaper_source_shop'] = '唯品会'yield shop_diaper_itemnext_url = sel.xpath('//div[@class="m-cat-paging ui-paging"]/a[@class="cat-paging-next next"]/@href').extract_first()if next_url is not None:next_url = response.urljoin(next_url)yield SplashRequest(next_url, callback=self.parse, endpoint='execute', args={'lua_source': self.script})

      第一步:  sel = Selector(response)
        items = sel.xpath('//div[@class="goods-list-item  c-goods  J_pro_items"]')  选取class是"goods-list-item  c-goods  J_pro_items"的元素

      第二步:遍历选取的元素,找到名称、价格、详情url,赋值给自定义DiaperItem,返回DiaperItem

      第三步:找取下一页:

       next_url = sel.xpath(
            '//div[@class="m-cat-paging ui-paging"]/a[@class="cat-paging-next next"]/@href').extract_first() 找取分页的下一页href。得到类似的结果:

判断是否为空,不为空,拼接成类似https://category.vip.com/suggest.php?keyword=纸尿裤&page=2&count=100&suggestType=brand#catPerPos的链接

在加入splash的渲染中间件,循环调取。

   ps:scrapy 是默认开启了,url去重的访问,所以即使有重复url路径请求,scrapy会自动清除。

   3.2.3保存数据

      使用pipeline来处理数据,使用mssql数据库来存储数据:

from DiaperService.MssqlService import MssqlServiceclass DiaperPipeline(object):def process_item(self, item, spider):name = item['diaper_name'].replace("'", "''")ms = MssqlService(server='192.168.200.200', user='sa', password='123456aA', db_name='test')sql = 'insert into [dbo].[Diaper](Name,Price,DetailUrl,SourceShop) ' \'values(\'%s\',%f,\'%s\',\'%s\') ' % (name,float(item['diaper_price']),item['diaper_url'],item['diaper_source_shop'])# print(sql)ms.exec_non_query(sql)return item

封装的mssql服务:

import pymssqlclass MssqlService(object):def __init__(self, server, user, password, db_name):self.host = serverself.user = userself.password = passwordself.database = db_nameself.conn = self.__get_Conn()def __get_Conn(self):conn = pymssql.connect(self.host, self.user, self.password, self.database)return conndef exec_query(self, sql):cur = self.conn.cursor()cur.execute(sql)result_list = cur.fetchall()cur.close()return result_listdef exec_non_query(self, sql):cur = self.conn.cursor()cur.execute(sql)self.conn.commit()cur.close()

setting配置pipeline的优先级300:

ITEM_PIPELINES = {'Diaper.pipelines.DiaperPipeline': 300,
}

那么到现在我们已经把爬虫从请求网页,获取相应,解析内容,保存数据的都完成开发,所以我们运行下程序,查看是否成功抓取数据。

数据库中的数据:

 4.总结

      scrapy还有很多强大的功能去探索,比如链式爬虫,能够递归爬取数据,可以配置递归的层级等。同时它的选择器lxml库,筛选查询非常方便快速,相较于正则表达式学习成本更低,更易理解,能让新手快速入门。

这篇关于Python爬虫学习-第四篇 Scrapy框架抓取唯品会数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/199308

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.