MySQL分库分表多维度查询——全表冗余

2023-10-12 17:30

本文主要是介绍MySQL分库分表多维度查询——全表冗余,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分表分库面临的问题

MySQL分库分表,一般只能按照一个维度进行查询.
以订单表为例, 按照用户ID mod 64 分成 64个数据库.
按照用户的维度查询很快,因为最终的查询落在一台服务器上.

非分区逻辑字段查询

但是如果按照商户的维度查询,则代价非常高.
需要查询全部64台服务器.

分页查询

在分页的情况下,更加恶化.
比如某个商户查询第10页的数据(按照订单的创建时间).需要在每台数据库服务器上查询前100条数据,程序收到 64*100 条数据,然后按照订单的创建时间排序,截取排名90-100号的10条记录返回,然后抛弃其余的6390条记录.如果查询的是第100页,第1000页,则对数据库IO,网络,中间件CPU,都是不小的压力.

常见解决方案

分库分表之后,为了应对多维度查询,很多情况下会引入冗余.

  • 全表冗余

全表冗余

比如两个集群,一个按照用户ID分库分表,另外一个按照商户ID分库分表.
这样多维度查询的时候,各查各的.
但是有几个问题,一样不好解决.
比如,
每扩展一个维度,就需要引入一个集群.
集群间的数据,如何保证一致性.
冗余占用大量磁盘空间.
从朋友那里看到的订单表结构.做冗余会占用大量的磁盘空间.

用户ID分表分库和商户ID分表分库实际操作

关键问题:保持两份数据的一致性。
通过消息中间件保持事务操作,然后分表进行入库操作,保持最终一致性。

案例
create table TS_ORDER  
(  ORDER_ID        NUMBER(8) not null,  SN              VARCHAR2(50),  MEMBER_ID       NUMBER(8),  STATUS          NUMBER(2),  PAY_STATUS      NUMBER(2),  SHIP_STATUS     NUMBER(2),  SHIPPING_ID     NUMBER(8),  SHIPPING_TYPE   VARCHAR2(255),  SHIPPING_AREA   VARCHAR2(255),  PAYMENT_ID      NUMBER(8),  PAYMENT_NAME    VARCHAR2(50),  PAYMENT_TYPE    VARCHAR2(50),  PAYMONEY        NUMBER(20,2),  CREATE_TIME     NUMBER(20) not null,  SHIP_NAME       VARCHAR2(255),  SHIP_ADDR       VARCHAR2(255),  SHIP_ZIP        VARCHAR2(20),  SHIP_EMAIL      VARCHAR2(50),  SHIP_MOBILE     VARCHAR2(50),  SHIP_TEL        VARCHAR2(50),  SHIP_DAY        VARCHAR2(255),  SHIP_TIME       VARCHAR2(255),  IS_PROTECT      VARCHAR2(1),  PROTECT_PRICE   NUMBER(20,2),  GOODS_AMOUNT    NUMBER(20,2),  SHIPPING_AMOUNT NUMBER(20,2),  ORDER_AMOUNT    NUMBER(20,2),  WEIGHT          NUMBER(20,2),  GOODS_NUM       NUMBER(8),  GAINEDPOINT     NUMBER(11) default 0,  CONSUMEPOINT    NUMBER(11) default 0,  DISABLED        VARCHAR2(1),  DISCOUNT        NUMBER(20,2),  IMPORTED        NUMBER(2) default 0,  PIMPORTED       NUMBER(2) default 0,  COMPLETE_TIME   NUMBER(11) default 0,  CANCEL_REASON   VARCHAR2(255),  SIGNING_TIME    NUMBER(11),  THE_SIGN        VARCHAR2(255),  ALLOCATION_TIME NUMBER(11),  SHIP_PROVINCEID NUMBER(11),  SHIP_CITYID     NUMBER(11),  SHIP_REGIONID   NUMBER(11),  SALE_CMPL       NUMBER(2),  SALE_CMPL_TIME  NUMBER(11),  DEPOTID         NUMBER(11),  ADMIN_REMARK    VARCHAR2(1000),  COMPANY_CODE    VARCHAR2(32),  PARENT_SN       VARCHAR2(50),  REMARK          VARCHAR2(100),  GOODS           CLOB,  ORIGINAL_AMOUNT NUMBER(20,2),  IS_ONLINE       CHAR(1),  IS_COMMENTED    CHAR(1) default 0,  ORDER_FLAG      CHAR(1) default 1  
)  

可以试试用表代替索引的方法.
1.分库分表
2.最终一致性
3.用表代替索引的功能
在这里插入图片描述
首先,还是基于分库分表.订单表按照用户ID mod 64 分到不同的服务器上(按照查询最多的维度分)。

数据库服务器1 的数据库名称为 db_1
数据库服务器2 的数据库名称为 db_2

以db_1为例,创建如下表
1.订单表
TS_ORDER_1 分区表,每个月一个分区.

2.事务表
create table tran_log_1(
tran_id bigint primary key,
param varchar(2000)
);
分区表,每个月一个分区.

3.消息表
create table msg_log_1(
tran_id bigint,
shardKey varchar(20) not null,
primary key(tran_id,shardKey)
);
分区表,每个月一个分区.

4.维度索引表
create table shard_shop_1(
id bigint primary key auto_increment,
shopid int,
ts timestamp,
state int,
dbid int,
orderid bigint,
index(shopid,ts,state)
);
分区表,每个月一个分区.

关于使用事务表,消息表实现分库分表最终一致性请参考
http://blog.itpub.net/29254281/viewspace-1819422/

关于集群主键生成服务请参考
http://blog.itpub.net/29254281/viewspace-1811711/

订单创建的流程
Web服务器接收到用户订单,首先通过RPC获取一个事务ID(tran_id).
用事务ID mod 64 找到数据库服务器,
将事务ID,参数写入tran_log 表,
然后将事务ID,参数写入消息队列.
如果写入消息队列成功,则提交事务.否则回滚事务.
此时就可以返回用户界面.

后端处理服务收到消息队列的信息,首先查询tran_log 表,是否存在这个事务ID,如果不存在则不予处理.
然后将队列的消息,分为两个维度分别处理,一个是用户维度,一个是商户维度.
作为用户维度,
先根据用户ID mod 64 找到最终落地的数据库,查询那个数据库的消息表msg_log,在用户维度,是否存在这个事务ID,如果存在,则不予处理.
(select count(*) from msg_log_XX where shardKey=‘订单创建:用户维度’ and tran_id=?)
如果不存在,则开启一个事务
插入订单表,我觉得可以用tran_id直接作为订单的ID,
并且插入消息表 insert msg_log_XX(tran_id,shardKey) values(?,‘订单创建:用户维度’);
提交事务,commit.

作为商户维度,
则根据商户ID mod 64 找到最终的数据库,和用户维度的数据库,可能不是同一台服务器.
同样,也是先查询落地数据库的消息表,
(select count(*) from msg_log_XXX where shardKey=‘订单创建:商户维度’ and tran_id=?)
如果不存在记录,则开启事务,
插入维度索引表,
insert into shard_shop_XXX(shopid,ts,state,dbid,orderid) values(…)
shopid,ts,state 商户ID,订单时间,订单状态都是根据订单的原始信息.
dbid 指的是 根据用户维度(主维度),订单数据所在的数据库ID,
orderid 指的是 在用户维度(主维度),订单表的主键.

插入消息表,insert msg_log_XX(tran_id,shardKey) values(?,‘订单创建:商户维度’);
最后提交.

这样,作为商户维度查询的时候,先根据商户的ID mod 64 找到 维度索引表,获取该商户的订单信息
select * from shard_shop_1 where shopid=? and state=2 order by ts limit 300,10;
获取的信息可能如下
在这里插入图片描述
可以看到,符合条件的订单信息,分别来自 服务器1,2,16,32,64
获取了这部分信息,就可以直接去这些服务器上取数据,并且是主键查询,速度很快.

每隔一段时间,由后台程序,查看 tran_log和msg_log,如果发现有缺失的数据,则进行事务补偿.

扩展的时候,则新增维度索引表即可.

因为所有的表,都是按月的分区表,可以将过去的冷数据,在一个服务器集中存放,这个实例就同时存放64个数据库.毕竟都是冷数据,访问量很小.
能分还要能合.比如:

参考文章:
http://blog.itpub.net/29254281/viewspace-2086198/

这篇关于MySQL分库分表多维度查询——全表冗余的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/197345

相关文章

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

使用shardingsphere实现mysql数据库分片方式

《使用shardingsphere实现mysql数据库分片方式》本文介绍如何使用ShardingSphere-JDBC在SpringBoot中实现MySQL水平分库,涵盖分片策略、路由算法及零侵入配置... 目录一、ShardingSphere 简介1.1 对比1.2 核心概念1.3 Sharding-Sp

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据