开山之作 | YOLOv1算法超详细解析(包括诞生背景+论文解析+技术原理等)

本文主要是介绍开山之作 | YOLOv1算法超详细解析(包括诞生背景+论文解析+技术原理等),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:Hello大家好,我是小哥谈。目标检测是计算机视觉领域的一项重要研究方向,它在许多应用领域中都得到了广泛应用,如人脸识别、物体识别、自动驾驶、视频监控等。在过去,目标检测方法主要采用基于RCNN、Fast R-CNN等深度学习算法,这些方法虽然精度较高,但需要耗费很长时间进行计算,因此无法实现实时处理。而在2015年,Joseph Redmon等人设计了一种新的深度学习算法YOLO,这种算法具有处理速度快、准确性高的特点,被广泛应用于目标检测领域。本节课就给大家重点介绍下YOLO系列算法的开山之作—YOLOv1,希望大家学习之后能够有所收获!🌈 

      目录

🚀1.什么是目标检测?

🚀2.YOLOv1算法的诞生背景

🚀3.YOLOv1论文

🚀4.YOLOv1技术原理

💥💥4.1 网络结构

💥💥4.2 实现方法

💥💥4.3 训练策略

 🚀5.YOLOv1性能评价

🚀1.什么是目标检测?

目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。

如今,目标检测的研究方法主要包括两大类:

  1. 基于传统图像处理和机器学习算法的目标检测与识别方法
  2. 基于深度学习的目标检测与识别方法

针对这两种目标检测方法,下面进行详细介绍。

🍀(1)基于传统图像处理和机器学习算法的目标检测与识别方法

传统的目标检测与识别方法主要可以表示为:目标特征提取 -> 目标识别 -> 目标定位。这里所用到的特征都是人为设计的,主要包括:

  • SIFT (尺度不变特征变换匹配算法,Scale Invariant Feature Transform);
  • HOG(方向梯度直方图特征,Histogram of Oriented Gradient);
  • SURF( 加速稳健特征,Speeded Up Robust Features)。

通过这些特征对目标进行识别,然后再结合相应的策略对目标进行定位。

🍀(2)基于深度学习的目标检测与识别方法

如今,基于深度学习的目标检测与识别方法已经成为主流方法,主要可以表示为:图像的深度特征提取 -> 基于深度神经网络的目标识别与定位,其中主要用到的深度神经网络模型是卷积神经网络CNN。目前可以将现有的基于深度学习的目标检测与识别算法大致分为以下三大类:

  • 基于区域建议的目标检测与识别算法,如R-CNN、Fast R-CNN、Faster R-CNN、Mask R-CNN等;
  • 基于回归的目标检测与识别算法,如YOLO、SSD;
  • 基于搜索的目标检测与识别算法,如基于视觉注意的AttentionNet,基于强化学习的算法等。

🚀2.YOLOv1算法的诞生背景

YOLOv1算法是在2016年发表的,由Joseph Redmon等人开发,其全称为You Only Look Once version 1。它的特点是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测出目标的类别和位置信息。相比于传统的目标检测算法,YOLOv1具有速度快、精度高等优点。 YOLOv1算法的诞生背景是由于传统的目标检测算法在实时性和准确性上存在矛盾。传统的目标检测算法需要在图像中进行多次滑动窗口操作,计算量大,导致实时性较差。而YOLOv1算法采用了全卷积神经网络,将目标检测任务转化为一个回归问题,大大减少了计算量,提高了实时性。此外,YOLOv1算法还采用了多尺度训练多尺度预测等技术,进一步提高了检测准确率。

❓❓YOLOv1算法相比于传统目标检测算法有哪些优势和劣势?

YOLOv1相比于传统目标检测算法的优势主要有两点:

  1. YOLOv1的检测速度非常快,可以达到实时检测的要求,这是因为YOLOv1采用了单个神经网络同时预测多个物体的位置和类别,避免了传统算法中的候选区域生成和特征提取等耗时的步骤。
  2. YOLOv1的检测精度相对较高,尤其是在小目标检测方面表现优异,这是因为YOLOv1采用了整张图像的全局信息进行物体检测,避免了传统算法中因为局部信息不足而导致的漏检和误检。

但是,YOLOv1也存在一些劣势:

  1. YOLOv1对于小目标的检测效果不如传统算法,这是因为YOLOv1采用了较大的输入图像尺寸和较粗的特征图,导致小目标的特征难以被有效提取。
  2. YOLOv1在物体定位方面存在一定的误差,这是因为YOLOv1采用了较粗的特征图进行物体位置预测,导致物体位置的精度不高。

🚀3.YOLOv1论文

YOLOv1算法论文的题目是《 You Only Look Once: Unified, Real-Time Object Detection》,由 Joseph Redmon、Santosh Divvala、Ross Girshick和 Ali Farhadi 四位作者于2016年提出。该论文提出了一种基于单个神经网络的实时目标检测算法,可以在一张图片中同时检测出多个不同类别的物体,并且速度非常快。该算法的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接输出物体的类别、位置和大小等信息。

说明:♨️♨️♨️

论文题目:《You Only Look Once: Unified, Real-Time Object Detection》

论文地址:  https://arxiv.org/abs/1506.02640

说明:♨️♨️♨️

关于YOLOv1论文的详细解析,请参考文章:

开山之作 | YOLOv1论文介绍及翻译(纯中文版)


🚀4.YOLOv1技术原理

💥💥4.1 网络结构

YOLOv1网络借鉴了GoogLeNet分类网络结构,不同的是YOLOv1使用1x1卷积层3x3卷积层替代inception module。如下图所示,整个检测网络包括24个卷积层和2个全连接层。其中,卷积层用来提取图像特征,全连接层用来预测图像位置和类别概率值。👇

现在看来,YOLOv1的网路结构非常明晰,是一种传统的one-stage的卷积神经网络:

  • 网络输入:448×448×3的彩色图片。
  • 中间层:由若干卷积层和最大池化层组成,用于提取图片的抽象特征。
  • 全连接层:由两个全连接层组成,用来预测目标的位置和类别概率值。
  • 网络输出:7×7×30的预测结果。

💥💥4.2 实现方法

YOLOv1采用的是“分而治之”的策略,将一张图片平均分成7×7个网格,每个网格分别负责预测中心点落在该网格内的目标。回忆一下,在Faster R-CNN中,是通过一个RPN来获得目标的感兴趣区域,这种方法精度高,但是需要额外再训练一个RPN网络,这无疑增加了训练的负担。在YOLOv1中,通过划分得到了7×7个网格,这49个网格就相当于是目标的感兴趣区域。通过这种方式,我们就不需要再额外设计一个RPN网络,这正是YOLOv1作为单阶段网络的简单快捷之处!🔖

具体实现过程如下:👇

  • 将一幅图像分成 S×S个网格(grid cell),如果某个 object 的中心落在这个网格中,则这个网格就负责预测这个object。
  • 每个网格要预测 B 个bounding box,每个 bounding box 要预测 (x, y, w, h) 和 confidence 共5个值。
  • 每个网格还要预测一个类别信息,记为 C 个类。
  • 总的来说,S×S 个网格,每个网格要预测 B个bounding box ,还要预测 C 个类。网络输出就是一个 S × S × (5×B+C) 的张量。在实际过程中,YOLOv1把一张图片划分为了7×7个网格,并且每个网格预测2个Box(Box1和Box2),20个类别。所以实际上,S=7,B=2,C=20。那么网络输出的shape也就是:7×7×30。

说明:♨️♨️♨️

1. 由于输出层为全连接层,因此在检测时,YOLOv1训练模型只支持与训练图像相同的输入分辨率(可以通过reshape的方法把你的照片压缩或扩张成YOLO要求的尺寸)。

2. 虽然每个格子可以预测B个bounding box,但是最终只选择只选择IoU最高的bounding box作为物体检测输出,即每个格子最多只预测出一个物体。

💥💥4.3 训练策略

YOLOv1的训练策略主要包括以下几个方面:👇

  1. 数据集准备:YOLOv1使用PASCAL VOC数据集进行训练,数据集中包含20个类别的物体,每个物体都有对应的边界框和标签信息。

  2. 模型设计:YOLOv1采用单个卷积神经网络同时预测物体类别和边界框信息,输出一个S*S(B*5+C)的张量,其中S表示特征图的大小,B表示每个格子预测的边界框数量,C表示物体类别数。

  3. 损失函数:YOLOv1使用均方误差作为损失函数,同时考虑物体类别预测误差和边界框预测误差。

  4. 训练过程:YOLOv1采用随机梯度下降算法进行训练,每次随机选择一张图片进行训练,采用多尺度训练和数据增强技术提高模型的泛化能力。


 🚀5.YOLOv1性能评价

YOLOv1是一种基于单阶段检测器的目标检测算法,其主要特点是速度快,但精度相对较低。下面是YOLOv1的性能评价:

  1. 精度:在PASCAL VOC 2012数据集上,YOLOv1的mAP为63.4%,相比于当时的其他目标检测算法,如Faster R-CNN和SSD,精度较低。
  2. 速度:YOLOv1的速度非常快,可以达到45帧/秒的实时检测速度。
  3. 目标类别数:YOLOv1最多支持20个目标类别的检测。

综上所述,YOLOv1适用于对实时性要求较高,但对精度要求相对较低的场景,如视频监控等。


这篇关于开山之作 | YOLOv1算法超详细解析(包括诞生背景+论文解析+技术原理等)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/195193

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和