心血管疾病预测--逻辑回归实现二分类

2023-10-12 10:20

本文主要是介绍心血管疾病预测--逻辑回归实现二分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、实现效果

  实现心血管疾病的预测准确率70%以上

二、数据集介绍

 数据共计70000条,其中心血管疾病患者人数为34979,未患病人数为35021。数据特征属性12个分别为如下所示:生理指标(性别、年龄、体重、身高等)、 医疗检测指标(血压、血糖、胆固醇水平等)和患者提供的主观信息(吸烟、饮酒、运动等):

age年龄
gender性别 1女性, 2 男性
height身高
weight 体重
ap_hi收缩压
ap_lo 舒张压
cholesterol胆固醇 1:正常; 2:高于正常; 3:远高于正常

gluc 葡萄糖,1:正常; 2:高于正常; 3:远高于正常

smoke 病人是否吸烟 alco 酒精摄入量

active 体育活动

cardio 有无心血管疾病,0:无;1:有

数据来源;http://idatascience.cn/

三、实现步骤

3.1 数据导入与分析

# 导入需要的工具包
import pandas as pd # data processing
import numpy as np
import matplotlib.pyplot as plt
#matplotlib inline
import seaborn as sns  # plotfrom sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report,confusion_matrix
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings("ignore")
import randomdata = pd.read_csv('E: /心脏疾病预测分析/cardio_train.csv',sep=',')
data.drop(columns=['id'],inplace=True)
data.head()

 

 

 相关性分析:

correlations = data.corr()['cardio'].drop('cardio') #drop默认删除行
print(correlations)

 

 

3.2  划分数据集(训练数据集、测试数据集、验证数据集)

# 切分数据集
np.random.seed(1)#便于调试代码(设置种子-保证执行代码样本及结果一致--稳定复现结果)
# 获取当前随机状态
state = random.getstate()
# 获取随机种子
seed = state[1][0]msk = np.random.rand(len(data))<0.85
df_train_test = data[msk]# 筛选出59450个随机样本
df_val = data[~msk]#剩下的随机样本--用作验证数据集X = df_train_test.drop('cardio',axis=1)#删除最后一列,只包含样本特征
y = df_train_test['cardio']#样本对应的标签
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=70)#调用的训练和测试数据集样本划分函数

3.3  数据标准化

# 数据标准化
scale = StandardScaler()
scale.fit(X_train)
X_train_scaled = scale.transform(X_train)
X_train_ = pd.DataFrame(X_train_scaled,columns=data.columns[:-1])#添加列名,除去最后一列名(标签)scale.fit(X_test)
X_test_scaled = scale.transform(X_test)
X_test_ = pd.DataFrame(X_test_scaled,columns=data.columns[:-1])

 3.4  特征选择

逻辑回归默认的算法为:lbfgs,L2正则化项。

模型的具体参数信息:


#特征选择
def feat_select(threshold):abs_cor = correlations.abs()features = abs_cor[abs_cor > threshold].index.tolist()
return features
def model(mod,X_tr,X_te):
mod.fit(X_tr,y_train)
pred = mod.predict(X_te)
print('Model score = ',mod.score(X_te,y_test)*100,'%')#子集准确性
# 逻辑回归#筛选出合适的阈值
lr = LogisticRegression()
#lr = LogisticRegression(penalty='l2', solver='saga')
# lr = LogisticRegression(solver='newton-cholesky')
# lr = LogisticRegression(solver='sag')
# lr = LogisticRegression(solver='newton-cg')threshold = [0.001,0.002,0.005,0.01,0.02,0.05,0.06,0.08,0.1]
for i in threshold:print("Threshold is {}".format(i))feature_i = feat_select(i)X_train_i = X_train[feature_i]#训练集X_test_i = X_test[feature_i]#测试集model(lr,X_train_i,X_test_i)
feat_final = feat_select(0.005)# 筛选出重要特征,列表
print(feat_final)

 3.5  预测及结果评估

#验证数据集的标准化
X_val = np.asanyarray(df_val[feat_final])#删除最后一列,只包含样本特征  --转换为数组
y_val = np.asanyarray(df_val['cardio']) #--转换为数组scale.fit(X_val)
X_val_scaled = scale.transform(X_val)
X_val_ = pd.DataFrame(X_val_scaled,columns=df_val[feat_final].columns)#逻辑回归预测
lr.fit(X_train,y_train)
pred = lr.predict(X_val_)
#结果评估
print('Confusion Matrix =\n',confusion_matrix(y_val,pred))
print('\n',classification_report(y_val,pred))
lr.get_params()

 参考:

   sklearn.linear_model.LogisticRegression — scikit-learn 1.2.2 documentation

这篇关于心血管疾病预测--逻辑回归实现二分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/195180

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文