AI芯片:英伟达NVDLA结构分析

2023-10-12 07:40

本文主要是介绍AI芯片:英伟达NVDLA结构分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

英伟达开源了深度学习硬件架构:NVDLA。
包括完整的源代码:Verilog代码,C_Model代码,以及验证平台代码。
英伟达官网上也有详细的文档。
英伟达NVDLA官网:http://nvdla.org/primer.html
非常值得学习推敲。

感谢英伟达的分享

不得不吐槽一下,NVDLA的开源代码一看就知道是脚本生成的,造成重复代码非常多,非常不方便阅读。
比如输入的1024位的数据,竟然在接口上是按照8位一个byte为单位来生成的信号,也就是说明明用1个1024位的信号就行了,但是代码中用的是128个8位的数据。
吐血。。。。

作为芯片从业者,我更加关注NVDLA卷积核的实现方式。
不过,文档中并没有详细的说明。
众多分析博客,也更多的是系统层的应用,几乎没有分析内部硬件结构的文章。
于是,直接看代码,分析结构。
好记性不如烂笔头。
顺便将看代码的过程中学习到的东西,记录下来,以备后续查看。

1、NVDLA 硬件架构

NVDLA的SOC整体架构如下图1所示。图片来自英伟达官网。
根据配置的不同,可分为两种。
在这里插入图片描述

接下来,细看NVDLA的硬件核心。如下图所示。
在这里插入图片描述

NVDLA core的内部架构,与寒武纪的DianNao、谷歌的TPU,都比较像。

共同点,主要思路是:数据从memory来,回memory去。中间先进入乘法、加法逻辑,完成卷积的计算,然后是执行激活、pooling和BN等操作。
不同点,主要区别在于卷积核(Convolution CORE)内部:
(1)TPU采用高效整齐的脉动阵列(systolic array),
(2)DianNao共16个PE,每个PE采用16个乘法和15个加法逻辑形成一个完整的计算单元,或许会类似NVDLA,将乘法加法IP展开融合起来。
(3)NVDLA采用两个卷积核,每个核中有8个mac,每个mac中有64个mul,每个mul就是一个16位的乘法逻辑。

下面就细细分析NVDLA的卷积核。

2、卷积核

一个NVDLA有2个卷积核core。
一个卷积核Core,由8个mac 组成。
1个mac中包含64个mul,形成4个输出结果。可简单看作16个mul计算得到1个结果。
具体结构可见下图。
在这里插入图片描述

Core同时支持3种数据类型:int8,int16,fp16。
按照官方文档介绍,NVDLA的卷积核支持4种工作模式:
(1)Direct Convolution
这种直接卷积,类似寒武纪的DianNao架构。
(2)Image Input
针对第一层,输入是彩色图像,只有3个channel。
(3)Winograd
利用Winograd算法,采用其中的F(2x2,3x3)参数公式。以尽可能少的乘法器数量去计算得到卷积结果。
(4)Batching
一次性计算多个inference,重复利用权重参数,节省存储和带宽。

那么,一个core是如何同时支持以上的这些特性的呢?

细看代码发现,NVDLA的core内部,没有利用已有的乘法/加法/乘加计算IP,而是直接在代码中展开并重写了IP的内部逻辑。

core从顶层得到2个1024bit的数据,一个是weight,一个是data。
在core中分发成8份,发送给8个mac,每个mac的数据都是2个1024位的数据。

mac得到2个1024的原始数据,会将这些数据对应给到64个mul。每个mul的输入数据都是16位的。
如果是int8,没关系,16位的输入数据就代表的是两个8位的数据。
mac内部的64个mul结构如下图所示。
在这里插入图片描述
在mul中,首先取其中一个16位的数据,根据3位的boothcode算法,形成8个boothcode,然后分别编码另一个数据,形成8个部分和,再各自加上一个进位,共10个部分和,分成两组。
然后10组部分和经过两次的3-2CSA压缩后,形成2个部分和,输出。

这样,mac一次性得到了64组部分和。
然后按照一定顺序,继续利用3-2CSA算法,将64组部分和压缩成16组部分和,即64(128)->16(32).

到了这个地方,就到了一个分水岭。

普通正常的卷积计算,那么就选择走first half.(不是我故意写英文装逼,这个是代码中的原始注释,我直接套用了)
如果是winograd,那么就还需要走second half.
fp16的指数计算有专门的逻辑。

first half,继续按照3-2CSA压缩16组部分和,直到形成4组部分和(8个)。然后每两个相对应的部分和及符号位,三者相加,形成卷积结果。

second half,这里就要根据F(2x2,3x3)的特殊参数,对后8组部分和进行特殊处理的3-2CSA压缩,直到形成2组部分和为止。
然后这个时候,会有winograd逻辑信号去控制winograd的结果的生成。

这样,就形成了mac的4个输出。

NVDLA支持Winograd算法的F(2x2,3x3)形式。
但是,这个只是复用mac中的mul,实际来看,并不能完整发挥出每16个mac计算出4个神经元的理论性能。如果是理论上的,16个mul计算得到4个神经元,那么64个mul,就会计算得到16个神经元。但是一个mac实际只有4个输出数据。

所以,我猜测,所谓的支持Winograd,实际性能或许并不理想,或许只是单纯为了支持这种计算方式而已。

但是,因为只是静态地看代码,所以不清楚8个mac的输入数据之间有什么关系。
暂时只能分析到这里。

这篇关于AI芯片:英伟达NVDLA结构分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/194351

相关文章

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark