矩陣分析-線性系統-2 高斯消元法、高斯-若爾當消元法

2023-10-12 01:18

本文主要是介绍矩陣分析-線性系統-2 高斯消元法、高斯-若爾當消元法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://www.cnblogs.com/pegasus/archive/2011/07/31/2123195.html  

1. 高斯消元法

高斯消元法(Gaussian elimination是求解線性方陣組的一種算法,它也可用來求矩陣的秩,以及求可逆方陣的逆矩陣。它通過逐步消除未知數來將原始線性系統轉化為另一個更簡單的等價的系統。它的實質是通過初等行變化(Elementary row operations),將線性方程組的增廣矩陣轉化為行階梯矩陣(row echelon form)。總結起來,如下步驟所示

 

以下面方程組為例,它的執行步驟為

                          image

1)構造增廣矩陣,即系數矩陣A增加上常數向量b(A|b)

                          image

2)通過以交換行、某行乘以非負常數和兩行相加這三種初等變化將原系統轉化為更簡單的三角形式(triangular form)

     注:這裡的初等變化可以通過系數矩陣A乘上初等矩陣E來實現

                         image

3)從而得到簡化的三角方陣組,注意它更容易解

                         image

4)這時可以使用向後替換算法(Algorithm for Back Substitution)求解得

    z=-4/-4=1,  y=4-2z=4-2=2,  x= (1-y-z)/2=(1-2-1)/2=-1

 

總結上面過程,高斯消元法其實就是下面非常簡單的過程

                            原線性方程組       ——>       高斯消元法     ——> 下三角或上三角形式的線性方程組           ——>  前向替換算法求解(對於上三角形式,采用後向替換算法)

image         \begin{matrix}l_{1,1} x_1 &   &             &            &             & = &    b_1 \\l_{2,1} x_1 & + & l_{2,2} x_2 &            &             & = &    b_2 \\     \vdots &   &      \vdots &     \ddots &             &   & \vdots \\l_{m,1} x_1 & + & l_{m,2} x_2 & + \dotsb + & l_{m,m} x_m & = &   b_m  \\\end{matrix}                 image        

2.高斯-若爾當消元法(Gauss-Jordan Elimination

相對於高斯消元法,高斯-若爾當消元法最後的得到線性方程組更容易求解它得到的是簡化行列式。其轉化後的增高矩陣形式如下,因此它可以直接求出方程的解,而無需使用替換算法。但是,此算法的效率較低。

                             image

 

例子如下:

image          解為image

 

3.實際應用中的高斯消元法

前面介紹了最基本的高斯消元法,現在看看應用於實際問題的實用算法。

3.1 誤差

因為實際應用中,我們總是利用計算機來分析線性系統,而計算機中以有限的數來近似無限的實數,因此產生舍入誤差(roundoff error),進而對解線性系統產生很多影響。

 

一個t位(即精度為t)以image為基的浮點數的表達形式為:imageimage對於一個實數x,其浮點近似值image為最接近x的浮點數,必要時進行近似image

例1:對2位以10為基的浮點算法,image

例2:同樣考慮imageimage

 

以下面系統為例,看看在高斯消元中采用浮點算法會產生什麼效果。

                                                                           image

當以精確解法時,通過將第一行乘以m=89/47,並從第二行中減去得到image,進而利用後向替換算法得x=1,y=-1。

當以3位以10為基的浮點算法時,乘子變為image,因為image因此第一步高斯消元後得

image。此時,因為不能將第2行第1列位置變為0,所以不能將其三角化。從而,我們只能接受將這個位置值賦為0,而不管其實際浮點值。因此,3位浮點高斯消元的結果為image後向算法計算結果為image

3.2 部分主元消元(Partial Pivoting)

盡管無法消除近似誤差的影響,可以采用一些技術來盡量減小這類機器誤差。部分主元消元法在高斯消元的每一步,都選擇列上最大值為軸(通過行變換將其移動)。

3.

这篇关于矩陣分析-線性系統-2 高斯消元法、高斯-若爾當消元法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/192188

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

HDU 5833 高斯消元

n个数,任选>=1个数相乘,使得乘积是完全平方数。 其实就是开关,控制灯泡。 数 ----第i个质因子p的个数%2  = {1 , 0} == 开关----第i个灯泡 = {开 , 关} 最后使得所有灯泡都是灭着的方案数 = 2^自由变元个数   全部关着的情况     ==   一个数也不选   应省去 import java.io.BufferedReader;

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除