判断两个线段相交问题(快速排斥实验跨立实验) (计算几何)

本文主要是介绍判断两个线段相交问题(快速排斥实验跨立实验) (计算几何),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算几何中,有 判断两个线段是否相交问题. 用到快速排斥实验和 跨立实验

快速排斥实验,是跨立实验的前提和基础.

假设有点 P1(x1,y1) P2(x2,y2)  Q1(x3,y3) Q2(x4,y4)  构成线段 P1P2  Q1Q2 问 P1P2与Q1Q2是否相交

快速排斥实验:  

 P1P2 对角线构成矩形R, Q1Q2对角线构成矩形T  若 R与T 相交着 通过快速排斥, 否则不通过

 矩形相交判断:

§  方法:  假设 P1 = (x1, y1), P2 = (x2, y2), Q1 = (x3, y3),Q2 = (x4, y4)

 设矩形 R x坐标的最小边界为 RX1 = min(x1, x2)RX2=max(x1,x2) ,RY1=min(y1,y2)

 以此类推,将矩形表示为 R = (RX1, RY1, RX2, RY2)的形式,若两矩形相交,

 则相交的部分构成了一个新的矩形 F,我们可以知道 F FX1 = max(RX1, TX1), FY2 = max(RY1, TY1),

 FX2 = min(RX2,TX2), FY2 = min(RY2, TX2),得到 F 的各个值之后,

 只要判断矩形 F是否成立就知道 R T到底有没有相交了

  FX1 > FX2 FY1 > Fy1 F无法构成,RT不相交,否则 RT相交

 § 

跨立实验:(互相跨立)

 

若 P1P2 跨立 Q1Q2,则 P1,P2 分别在 Q1Q2 所在直线的两端,

则有 (P1 - Q1)*(Q2 - Q1) * (Q2 - Q1)*(P2 - Q1) > 0,当 (P1 - Q1)*(Q2 - Q1) = 0 时,

说明 (P1 - Q1) 与 (Q2 - Q1) 共线,但由于已经经过快速排斥试验,所以 Q1 必为 P1P2 与 Q1Q2 的交点,

依然满足线段相交的条件,则跨立试验可改为:

 当 (P1 - Q1)*(Q2 - Q1) * (Q2 - Q1)*(P2 - Q1) >= 0,则 P1P2 跨立 Q1Q2,当 Q1Q2 也跨立 P1P2 的时候,则 P1P2 相交



[代码实现]


#include <iostream>
#include <bits/stdc++.h>
using namespace std;typedef struct Node{double x,y;
}point;
typedef struct Segments{point line;
}Line;
typedef struct Rectangle{point A,B;
}Rec; 
double x1,x2,x3,x4,y1,y2,y3,y4;
bool judge1(Rec R,Rec T)
{Rec F;R.A.x=min(x1,x2);R.A.y=min(y1,y2);R.B.x=max(x1,x2);R.B.y=max(y1,y2);T.A.x=min(x3,x4);T.A.y=min(y3,y4);T.B.x=max(x3,x4);T.B.y=max(y3,y4);F.A.x=max(R.A.x,T.A.x); F.A.y=max(R.A.y,T.A.y);F.B.x=min(R.B.x,T.B.x); F.B.y=min(R.B.y,T.B.y);if(F.A.x>=F.B.x || F.A.y>=F.B.y)return false;return true;
}
bool judge2()
{Line P1Q1,P2Q1,Q2Q1,Q2P2,P1P2,Q1P2;P1Q1.line={x1-x3,y1-y3};P2Q1.line={x2-x3,y2-y3};Q2Q1.line={x4-x3,y4-y3};Q2P2.line={x4-x3,y4-y2};Q1P2.line={x3-x2,y3-y2};P1P2.line={x1-x2,y1-y2};// 叉乘  A(x1,y1) X B(x2,y2) = x1y2-x2y1 if( (P1Q1.line.x*Q2Q1.line.y-Q2Q1.line.x*P1Q1.line.y)*(Q2Q1.line.x*P2Q1.line.y-P2Q1.line.x*Q2Q1.line.y)>=0 ){if( (Q1P2.line.x*Q2P2.line.y-Q2P2.line.x*Q1P2.line.y)*(Q2P2.line.x*P1P2.line.y-P1P2.line.x*Q2P2.line.y)>=0 )return true;elsereturn false;}return false;
}
int main()
{Rec R,T;cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4;if(!judge1(R,T))cout<<"矩阵R与T矩阵不相交 即 线段P1P2 与线段Q1Q2不相交"<<endl;else{if(judge2)cout<<"线段P1P2 与 线段 Q1Q2 相交"<<endl;elsecout<<"不相交"<<endl; } return 0;
}
/*
-2 0
1 2
-1 1
2 -1
*/



 



这篇关于判断两个线段相交问题(快速排斥实验跨立实验) (计算几何)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/190437

相关文章

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如