判断两个线段相交问题(快速排斥实验跨立实验) (计算几何)

本文主要是介绍判断两个线段相交问题(快速排斥实验跨立实验) (计算几何),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算几何中,有 判断两个线段是否相交问题. 用到快速排斥实验和 跨立实验

快速排斥实验,是跨立实验的前提和基础.

假设有点 P1(x1,y1) P2(x2,y2)  Q1(x3,y3) Q2(x4,y4)  构成线段 P1P2  Q1Q2 问 P1P2与Q1Q2是否相交

快速排斥实验:  

 P1P2 对角线构成矩形R, Q1Q2对角线构成矩形T  若 R与T 相交着 通过快速排斥, 否则不通过

 矩形相交判断:

§  方法:  假设 P1 = (x1, y1), P2 = (x2, y2), Q1 = (x3, y3),Q2 = (x4, y4)

 设矩形 R x坐标的最小边界为 RX1 = min(x1, x2)RX2=max(x1,x2) ,RY1=min(y1,y2)

 以此类推,将矩形表示为 R = (RX1, RY1, RX2, RY2)的形式,若两矩形相交,

 则相交的部分构成了一个新的矩形 F,我们可以知道 F FX1 = max(RX1, TX1), FY2 = max(RY1, TY1),

 FX2 = min(RX2,TX2), FY2 = min(RY2, TX2),得到 F 的各个值之后,

 只要判断矩形 F是否成立就知道 R T到底有没有相交了

  FX1 > FX2 FY1 > Fy1 F无法构成,RT不相交,否则 RT相交

 § 

跨立实验:(互相跨立)

 

若 P1P2 跨立 Q1Q2,则 P1,P2 分别在 Q1Q2 所在直线的两端,

则有 (P1 - Q1)*(Q2 - Q1) * (Q2 - Q1)*(P2 - Q1) > 0,当 (P1 - Q1)*(Q2 - Q1) = 0 时,

说明 (P1 - Q1) 与 (Q2 - Q1) 共线,但由于已经经过快速排斥试验,所以 Q1 必为 P1P2 与 Q1Q2 的交点,

依然满足线段相交的条件,则跨立试验可改为:

 当 (P1 - Q1)*(Q2 - Q1) * (Q2 - Q1)*(P2 - Q1) >= 0,则 P1P2 跨立 Q1Q2,当 Q1Q2 也跨立 P1P2 的时候,则 P1P2 相交



[代码实现]


#include <iostream>
#include <bits/stdc++.h>
using namespace std;typedef struct Node{double x,y;
}point;
typedef struct Segments{point line;
}Line;
typedef struct Rectangle{point A,B;
}Rec; 
double x1,x2,x3,x4,y1,y2,y3,y4;
bool judge1(Rec R,Rec T)
{Rec F;R.A.x=min(x1,x2);R.A.y=min(y1,y2);R.B.x=max(x1,x2);R.B.y=max(y1,y2);T.A.x=min(x3,x4);T.A.y=min(y3,y4);T.B.x=max(x3,x4);T.B.y=max(y3,y4);F.A.x=max(R.A.x,T.A.x); F.A.y=max(R.A.y,T.A.y);F.B.x=min(R.B.x,T.B.x); F.B.y=min(R.B.y,T.B.y);if(F.A.x>=F.B.x || F.A.y>=F.B.y)return false;return true;
}
bool judge2()
{Line P1Q1,P2Q1,Q2Q1,Q2P2,P1P2,Q1P2;P1Q1.line={x1-x3,y1-y3};P2Q1.line={x2-x3,y2-y3};Q2Q1.line={x4-x3,y4-y3};Q2P2.line={x4-x3,y4-y2};Q1P2.line={x3-x2,y3-y2};P1P2.line={x1-x2,y1-y2};// 叉乘  A(x1,y1) X B(x2,y2) = x1y2-x2y1 if( (P1Q1.line.x*Q2Q1.line.y-Q2Q1.line.x*P1Q1.line.y)*(Q2Q1.line.x*P2Q1.line.y-P2Q1.line.x*Q2Q1.line.y)>=0 ){if( (Q1P2.line.x*Q2P2.line.y-Q2P2.line.x*Q1P2.line.y)*(Q2P2.line.x*P1P2.line.y-P1P2.line.x*Q2P2.line.y)>=0 )return true;elsereturn false;}return false;
}
int main()
{Rec R,T;cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4;if(!judge1(R,T))cout<<"矩阵R与T矩阵不相交 即 线段P1P2 与线段Q1Q2不相交"<<endl;else{if(judge2)cout<<"线段P1P2 与 线段 Q1Q2 相交"<<endl;elsecout<<"不相交"<<endl; } return 0;
}
/*
-2 0
1 2
-1 1
2 -1
*/



 



这篇关于判断两个线段相交问题(快速排斥实验跨立实验) (计算几何)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/190437

相关文章

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动