NLP----神经网络语言模型(NNLM),词向量生成,词嵌入,python实现

2023-10-11 18:10

本文主要是介绍NLP----神经网络语言模型(NNLM),词向量生成,词嵌入,python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理论主要来自论文A Neural Probabilistic Language Model,可以百度到的

这篇博文对理论方面的介绍挺不错的    链接地址

一下是其中的一些截图,主要是算法步骤部分

算法步骤

前向计算

反向更新

 

个人实现的代码

import glob
import random
import math
import pickle
import numpy as np# 激活函数
def tanh(o, d):x = []for i in o:x.append(math.tanh(i))return xdef get_stopword_list(path):"""载入停用词"""stopword_list = [sw.replace('\n', '')for sw in open(path, 'r', encoding='utf8')]return stopword_listdef data_pre(path):"""数据载入,以及完成分词,统计总词数"""import jiebacontent = []with open(path, 'r', encoding='gbk', errors='ignore') as f:# sw_list = get_stopword_list('./data/stop_words.utf8')for l in f:l = l.strip()if(len(l) == 0):continuel = [x for x in jieba.cut(l) if x not in get_stopword_list('./data/stop_words.utf8')]content.append(l)return content# 随机生成词向量并分配词id
def creat_wv(wd, m):wd = {i: [random.random() for x in range(m)] for i in wd}idd = 0wid = {}for i in wd:wid[i]=wid.get(i,0)+iddidd+=1# wd['space__']=[random.random() for x in range(m)]# wid['space__']=wid.get(i,0)+iddreturn wd,widf = glob.glob(r'./data/news/*.txt')
data = []
wd = {}
c = 0
sf = len(f)
for text in f:c += 1temp = data_pre(text)data.extend(temp)for t in temp:for w in t:wd[w] = wd.get(w, 0)+1print(text+' complete ', end='')print(c/sf)
# print(data)
savedata = np.array(data)
swd = np.array(wd)
np.save('./data/sogo_news.npy',savedata)
np.save('./data/myw2vwd.npy',swd)
# data = np.load('./data/sogo_news.npy').tolist()
# 初始化神经网络
h = 100
v = len(wd)
m = 100
n = 4
win = 2
theta = 0.1 #学习率
# 输入层到隐藏权值,shape=n*m  *  h    n为window的大小,h为隐层神经元个数
H = [[random.random() for j in range(n*m)] for i in range(h)]
H = np.array(H)
d = [random.random() for j in range(h)]  # 隐层偏置 shape=1*h
U = [[random.random() for j in range(h)]for i in range(v)]  # 隐层到输出层权值 shape=h*V V为词的总数目
b = [random.random() for j in range(v)]  # 输出层偏置 shape = 1* V
maxtime = 5
sapce = [0 for i in range(m)]  # 空词向量
wvd,wid = creat_wv(wd, m)  # 随机生成词向量和id
sums = len(data)
while(maxtime>0):maxtime-=1# 训练神经网络sm = 0for s in data:  # s 是一句话aa = (sm+0.0)/sumssm+=1print('less',end='')print(maxtime,end='------------')print(aa)for w in range(len(s)):  # w是目标词下标# 构建输入向量xx = []inputword = []w_id = wid[s[w]]#目标词id# w_id2 = []#输入词for i in range(w-win, w+win+1):# w_id2.append(s[i])if i < 0:x.extend(sapce)elif i == w:continueelif i >= len(s):x.extend(sapce)else:x.extend(wvd[s[i]])inputword.append(s[i])#---前向计算------------------------# 计算隐层输入o = np.dot(x, H.T)+d# 计算隐层输出a = tanh(o, 1)a = np.array(a)# 计算输出层输入U = np.array(U)# H = np.array(H)y = np.dot(a, U.T)+by = y.tolist()# 计算输出p = [math.exp(i) for i in y]S = sum(p)p = [i/S for i in p]#----前向计算结束------------------------#计算目标函数Lif p[w_id] !=0:L = math.log(p[w_id])else:L=2.2250738585072014e-200#----反向传播------------------------la = 0lx = 0ly = [-i for i in p]ly[w_id]+=1b  =np.array(b)ly = np.array(ly)lb = b + theta*lyla= ly[0]*U[0]for j in range(1,v):la+=theta*ly[j]*U[j]for j in range(1,v):U[j]+=theta*lalo = [0 for q in range(len(la))]lo=np.array(lo)for k in range(h):lo[k]=(1-a[k]*a[k])*la[k] lx = np.dot(H.T,lo)d +=theta*lox = np.matrix(x)lo = np.matrix(lo)H += theta*np.dot(lo.T,x)x += theta*lxx = x.tolist()[0]for q in range(len(inputword)):a=x[0+i*m:m+i*m]for j in range(len(a)):wvd[inputword[q]][j]+=a[j]#---反向更新结束
#保存数据
output = open('./data/myw2v.pkl','wb')
pickle.dump(wvd,output)

测试代码

import math
def dis(a,b):s = 0for i in range(len(a)):t=a[i]-b[i]t=t*ts+=treturn math.sqrt(s)import pickle
inputt = open('./data/myw2v.pkl', 'rb') 
wd = pickle.load(inputt)
a = wd['记者']
b = wd['公司']
c = wd['企业']
d = wd['交易']
e = wd['支付']
print(dis(a,b))
print(dis(b,c))
print(dis(e,d))
print(dis(a,e))

 

这篇关于NLP----神经网络语言模型(NNLM),词向量生成,词嵌入,python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/189886

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

PyQt6/PySide6中QTableView类的实现

《PyQt6/PySide6中QTableView类的实现》本文主要介绍了PyQt6/PySide6中QTableView类的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录1. 基本概念2. 创建 QTableView 实例3. QTableView 的常用属性和方法

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

PyQt6/PySide6中QTreeView类的实现

《PyQt6/PySide6中QTreeView类的实现》QTreeView是PyQt6或PySide6库中用于显示分层数据的控件,本文主要介绍了PyQt6/PySide6中QTreeView类的实现... 目录1. 基本概念2. 创建 QTreeView 实例3. QTreeView 的常用属性和方法属性

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型