深入理解拉格朗日乘子法和KKT条件的原理及运用

2023-10-11 17:20

本文主要是介绍深入理解拉格朗日乘子法和KKT条件的原理及运用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深入理解拉格朗日乘子法和KKT条件的原理及运用

  • 一、凸函数
  • 二、常见的三类最优化问题
  • 三、拉格朗日乘子法解决带等式约束的最优化问题
    • (一)用实例理解拉格朗日乘子法的背后意义
    • (二)、拉格朗日乘子法求解带等式约束的最优化问题
  • 四、引入KKT条件求带不等式约束条件的最优化
    • (一)实例理解带不等式约束条件的最优化
    • (二)满足KKT条件下的利用拉格朗日函数求带不等式约束的最优化问题
    • (三)原最优化问题转对偶问题
  • 参考

一、凸函数

以下讨论均基于凸优化,首先要知道什么是凸函数:
对于任意属于[0,1]的a和任意属于凸集的两点x, y,有f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2),几何上的直观理解就是两点连线上某点的函数值,大于等于两点之间某点的函数值。凸函数的任一局部极小点也是全局极小点。
凸集定义:欧式空间中,对于集合中的任意两点的连线,连线上任意一点都在集合中,我们就说这个集合是凸集。

在这里插入图片描述
对于一元函数f(x),我们可以通过其二阶导数f′′(x) 的符号来判断。如果函数的二阶导数总是非负,即f′′(x)≥0 ,则f(x)是凸函数。
扩展:对于凸函数,我们可以推广出一个重要的不等式,即Jensen不等式。如果 f 是凸函数,X是随机变量,那么f(E(X))≤E(f(X)),上式就是Jensen不等式的一般形式。

二、常见的三类最优化问题

1.无约束优化问题:
min f(x);
对于无约束的优化问题解决方法通常是函数对变量求导,令求导函数等于0的点可能是极值点,最后再将结果带回原函数进行验证。但是如果已经是凸函数,就不需要再验证,可以保证求导函数等于0的点是最优解。
2.有等式约束的优化问题:
min f(x),
s.t hi(x)=0;i=1,…,n
解决这类问题要运用到拉格朗日乘子法构造拉格朗日函数,将在下面详细介绍
3.有不等式约束的优化问题:
min f(x),
s.t gi (x)<=0 (i=1,…,n)
hj(x)=0(j=1,…,m)
解决这类问题要引入KKT条件并构造拉格朗日函数,将在下面详细介绍

三、拉格朗日乘子法解决带等式约束的最优化问题

(一)用实例理解拉格朗日乘子法的背后意义

1.现在假设我们有一个函数
在这里插入图片描述
我们要在满足
在这里插入图片描述
这个等式约束条件下求极小值。也就是如下式:
在这里插入图片描述
2.我们需要先直观的看一下函数f(x,y)以及它的等高线的图像:
在这里插入图片描述
在这里插入图片描述
3.接下来,我们求出函数f(x,y)的梯度向量:
在这里插入图片描述
我们需要知道的是梯度向量

这篇关于深入理解拉格朗日乘子法和KKT条件的原理及运用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/189620

相关文章

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用