浅谈JVM垃圾收集——记忆集与卡表

2023-10-11 13:50

本文主要是介绍浅谈JVM垃圾收集——记忆集与卡表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

上一篇文章(浅谈JVM垃圾收集)提到了,当JVM进行垃圾收集时,它是怎么判断对象是否跨代引用的呢?

记忆集与卡表

为解决扫描GC ROOT时遇到对象跨代引用所带来的问题,收集器在新生代上建立一个全局的称为记忆集(Remembered Set)的数据结构

这个结构把老年代划分为若干个小块,标识出老年代哪一块内存会存在跨代引用。当发生 Minor GC 时,只有包含了跨代引用的小块内存中的老年代对象才会加入到 GC Roots 扫描中,避免整个老年代加入到 GC Roots 中。

事实上并不只是新生代、老年代之间才有跨代引用的问题,所有涉及部分区域收集(Partial GC)行为的 垃圾收集器,典型的如G1、ZGC和Shenandoah收集器,都会面临相同的问题。

记忆集是一种用于记录从非收集区域指向收集区域指针集合的抽象数据结构。在垃圾收集的场景中,收集器只需要通过记忆集判断出某一块非收集区域是否存在有指向了收集区域的指针就可以了,并不需要了解这些跨代指针的全部细节。那设计者在实现记忆集的时候,便可以选择更为粗犷的记录粒度来节省记忆集的存储和维护成本,下面列举了一些可供选择(当然也可以选择这个范 围以外的)的记录精度:

  • 字长精度:每个记录精确到一个机器字长(就是处理器的寻址位数,如常见的32位或64位,这个精度决定了机器访问物理内存地址的指针长度),该字包含跨代指针。
  • 对象精度:每个记录精确到一个对象,该对象里有字段含有跨代指针。
  • 卡精度:每个记录精确到一块内存区域,该区域内有对象含有跨代指针。

第三种“卡精度”所指的是用一种称为“卡表”(Card Table)的方式去实现记忆集,这也是 目前最常用的一种记忆集实现形式。

记忆集其实是一种“抽象”的数据结构,抽象的意思是只定义了记忆集的行为意图,并没有定义其行为的 具体实现。卡表就是记忆集的一种具体实现,它定义了记忆集的记录精度、与堆内存的映射关系等。 关于卡表与记忆集的关系,读者不妨按照Java语言中HashMap与Map。

HotSpot虚拟机定义的卡表只是一个字节数组。以下这行代码是HotSpot默认的卡表标记逻辑:

CARD_TABLE [this address >> 9] = 0;

字节数组CARD_TABLE的每一个元素都对应着其标识的内存区域中一块特定大小的内存块,这个 内存块被称作“卡页”(Card Page)。一般来说,卡页大小都是以2的N次幂的字节数,通过上面代码可 以看出HotSpot中使用的卡页是2的9次幂,即512字节(地址右移9位,相当于用地址除以512)。那如 果卡表标识内存区域的起始地址是0x0000的话,数组CARD_TABLE的第0、1、2号元素,分别对应了 地址范围为0x0000~0x01FF、0x0200~0x03FF、0x0400~0x05FF的卡页内存块,如下图所示:
在这里插入图片描述
一个卡页的内存中通常包含不止一个对象,只要卡页内有一个(或更多)对象的字段存在着跨代指针,那就将对应卡表的数组元素的值标识为1,称为这个元素变脏(Dirty),没有则标识为0。在垃圾收集发生时,只要筛选出卡表中变脏的元素,就能轻易得出哪些卡页内存块中包含跨代指针,把它们加入GC Roots中一并扫描。那虚拟机是何时让卡表元素变脏呢?它是如何维护卡表元素的呢?

写屏障

卡表元素何时变脏的答案是很明确的——有其他分代区域中对象引用了本区域对象时,其对应的卡表元素就应该变脏,变脏时间点原则上应该发生在引用类型字段赋值的那一刻,把维护卡表的动作放到每一 个赋值操作之中。

在HotSpot虚拟机里是通过写屏障(Write Barrier)技术维护卡表状态的。写屏障可以看作在虚拟机层面对“引用类型字段赋值”这个动作的AOP切 面,在引用对象赋值时会产生一个环形(Around)通知,也就是说赋值的前后都在写屏障的覆盖范畴内。在赋值前的部分的写屏障叫作写前屏障(Pre-Write Barrier),在赋值 后的则叫作写后屏障(Post-Write Barrier)。下面是简化的代码逻辑:

void oop_field_store(oop* field, oop new_value) {// 引用字段赋值操作 *field = new_value; // 写后屏障,在这里完成卡表状态更新 post_write_barrier(field, new_value); }

应用写屏障后,虚拟机就会为所有赋值操作生成相应的指令,一旦收集器在写屏障中增加了更新卡表操作,无论更新的是不是老年代对新生代对象的引用,每次只要对引用进行更新,就会产生额外的开销,不过这个开销与Minor GC时扫描整个老年代的代价相比还是低得多的。

“伪共享”问题

卡表在高并发场景下还面临着“伪共享”(False Sharing)问题。

伪共享是处理并发底层细节时一种经常需要考虑的问题,现代中央处理器的缓存系统中是以缓存行(Cache Line) 为单位存储的,当多线程修改互相独立的变量时,如果这些变量恰好共享同一个缓存行,就会彼此影响(写回、无效化或者同步)而导致性能降低,这就是伪共享问题。关于伪共享问题的更多内容看这篇文章——并发中的伪共享问题

假设处理器的缓存行大小为64字节,由于一个卡表元素占1个字节,64个卡表元素将共享同一个缓存行。这64个卡表元素对应的卡页总的内存为32KB(64×512字节),也就是说如果不同线程更新的对象正好处于这32KB的内存区域内,就会导致更新卡表时正好写入同一个缓存行而影响性能。

简单的说就是卡表内处于同一缓存行中的元素,若对应的不同卡页的内存中的对象的引用关系发生了变化,部分对象发生了跨代引用,那么对应的卡表数组元素就要从0变为1。但是它们由于处于同一缓存行,导致了CPU并行执行变为串行执行,降低了效率。
伪共享问题是卡表元素更改时处于同一缓存行导致的,诱发的因素是不同卡页内的对象发生了跨代引用。

为了避免伪共享问题,一种简单的解决方案是不采用无条件的写屏障,而是先检查卡表标记,只有当该卡表元素未被标记过时才将其标记为变脏,即将卡表更新的逻辑变为以下代码所示:

if (CARD_TABLE [this address >> 9] != 0) 
CARD_TABLE [this address >> 9] = 0;

在JDK 7之后,HotSpot虚拟机增加了一个新的参数-XX:+UseCondCardMark,用来决定是否开启卡表更新的条件判断。开启会增加一次额外判断的开销,但能够避免伪共享问题,两者各有性能损耗,是否打开要根据应用实际运行情况来进行测试权衡。

总结

记忆集与卡表

HotSpot虚拟机是用记忆集来记录某块内存区域是否包含跨代引用的对象。记忆集是抽象概念,而卡表是记忆集的实现

卡表是用字节数组实现的,卡表数组的每个元素都是代表某块具体内存区域,这个内存区域叫卡页

卡页的大小是512字节,代表一块特定大小的内存块,若在这块内存块中有一个或多个的跨代指针,则将对应的卡表元素标为1,代表“变脏”,否则为0。当虚拟机扫描卡表元素为1时,便将对应的卡页内存区域加入到GC ROOT中一并扫描。

写屏障

使用写屏障来实现卡表元素变脏。写屏障分为写前屏障和写后屏障,大多数垃圾收集器都是使用写后屏障(G1使用写前屏障)。写后屏障具体表现在对引用对象赋值时,如果是跨代引用,则通过写后屏障将对应的卡表元素变脏

伪共享问题(美团面试)

由于CPU集成的多级缓存中是以缓存行来读取数据的,通过MESI协议保证多个CPU之间的缓存一致性。
伪共享问题是卡表元素更改时处于同一缓存行导致的,诱发的因素是不同卡页内的对象发生了跨代引用,从而使CPU并行执行变为串行执行,降低了并发性能。

举例: 若a、b位于同一缓存行,当CPU1修改a后,若CPU2想修改b,必须先提交CPU1的缓存,然后CPU2再去主存中读取数据。

伪共享问题解决方案:JAVA中的解决方案有填充法Contended 注解

  • 填充法:就是 扩大对象的大小,这样,就可以一个缓冲行中,只存在一个对象!这样,就不会导致结果是串行执行了!
  • Contended 注解法:Java1.8 中提供了Contended注解,使用这个注解,VM必须设置 -XX:-RestrictContended。
    ConcurrentHashMap的内部类CounterCell有用到这个注解
    在这里插入图片描述

记忆集与OopMap的联系与区别
共同点:他们都是用于获取GC ROOT
不同点:OopMap记录的是准确的GC ROOT。而记忆集记录的是 包含跨代引用的GC ROOT 的一块内存,还要再扫描这块内存以得到GC ROOT。

问题讨论
前面说记忆集的时候有说到,老年代中的对象也存在跨代引用。目前只针对老年代进行回收的只有CMS收集器,但是在CMS中,对于老年代存在的跨代引用的对象,CMS并没有在老年代维护一个记忆集,而是把整个新生代加入到GC ROOT扫描?

问题回答
《深入理解Java虚拟机》的第3.5.7节中讲G1垃圾收集器的时候有提到CMS中的卡表,下面是书中的一段话:

相比起来CMS的卡表就相当简单, 只有唯一一份,而且只需要处理老年代到新生代的引用,反过来则不需要,由于新生代的对象具有朝 生夕灭的不稳定性,引用变化频繁,能省下这个区域的维护开销是很划算的。
代价就是当CMS发生Old GC时(所有收集器中只有CMS有针对老年代的Old GC),要把整个新生代作为GC Roots来进行扫描。([6]注释中的话)

可知CMS中只会在新生代建立记忆集,老年代中是没有建立记忆集的。
记忆集:用于记录从非收集区域指向收集区域的指针集合。
所以回收新生代时是有老年代(非收集区域)指向新生代(收集区域)的记忆集,而老年代则需要把整个新生代加入到GC ROOT扫描

这篇关于浅谈JVM垃圾收集——记忆集与卡表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/188503

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听