层次聚类算法之single-linkage和complete-linkage(C语言实现)

2023-10-11 04:48

本文主要是介绍层次聚类算法之single-linkage和complete-linkage(C语言实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

层次聚类试图在不同层次上对数据集合进行划分, 从而形成树形的聚类结构。数据集的划分可采用“自底向上”的聚合策略,也可以采用“自顶向下”的分拆策略。

AGNES是一种采用自底向上的聚合策略的层次聚合算法,它先将数据集中的每个样本看作是一个初始的聚类簇,然后在算法进行的每一步中找出距离最近的两个聚类来进行合并,该过程不断的重复,直到到达预设的聚类簇的个数。

改算法的关键是如何计算聚类之间的距离, 实际上,每一个聚类是一个样本的集合,因此,只需要采用关于集合的某种距离即可。

最近距离由两个簇的最近的样本来决定, 最大距离由两个簇的最远的样本来决定,由此分别产生的AGNES算法又分别称为single-linkage和complete-linkage算法。


single-linkage算法

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include<io.h>int sample_size;
int sample_dimension;
char filename[200];double** data;
double** distance;
int cluster_count;void initialization();
void readDataFromFile();
double calculateDistance_BetweenTwoObject(int, int);
void initializationDistanceMatrix();
void AGNES();
void findMinDistance_BetweenClsuter_MIN(int*, int*);
void combineCluster(int, int);
void writeToFile(int);int main(int argc, char* argv[])
{if( argc != 4 ){printf("This algorithm requires 4 user-specified parameter""\n\t\tthe number of sample""\n\t\tthe dimension of sample""\n\t\tthe filename contain the sample""\n\n");exit(0);}sample_size = atoi(argv[1]);sample_dimension = atoi(argv[2]);strcat(filename, argv[3]);initialization();readDataFromFile();initializationDistanceMatrix();AGNES();return 0;
}/** initialize the dynamic array for storing sample* */
void initialization()
{//initializaion the sample dataint i, j;data = (double**)malloc(sizeof(double*) * (sample_size + 1));if( !data ){printf("data malloc error: 0");exit(0);}for( i = 1; i <= sample_size; i++ ){data[i] = (double*)malloc(sizeof(double) * (sample_dimension + 1));if( !data[i] ){printf("data malloc error: %d", i);exit(0);}}//initialiation the distance datadistance = (double**)malloc(sizeof(double*) * (sample_size + 1));if( !distance ){printf("distance malloc error: 0");exit(0);}for( i = 1; i <= sample_size; i++ ){distance[i] = (double*)malloc(sizeof(double) * (sample_size + 1));if( !distance[i] ){printf("distance malloc error: %d", i);exit(0);}}//the 0th element of all row indicate the clauterID of the objectfor( i = 1; i <= sample_size; i++ ){distance[i][0] = i;}
}/** read the sample data from file* */
void readDataFromFile()
{FILE* fread;int i;int j;if( NULL == (fread = fopen(filename, "r"))){printf("open file(%s) error: ", filename);exit(0);}for( i = 1; i <= sample_size; i++ ){for( j = 1; j <= sample_dimension; j++ ){if( 1 != fscanf(fread, "%lf ", &data[i][j])){printf("fscanf error: (%d, %d)", i, j);exit(0);}}}//testprintf("print the origin data:\n");for( i = 1; i <= sample_size; i++ ){for( j = 1; j <= sample_dimension; j++ ){printf("%f\t", data[i][j]);}printf("\n");}//test END
}/** calculate distance between two objects* */
double calculateDistance_BetweenTwoObject(int firstID, int secondID)
{double distance = 0.0;int i;for( i = 1; i <= sample_dimension; i++ ){distance = distance + pow(data[firstID][i] - data[secondID][i], 2);}return sqrt(distance);
}/** calculate initialization distance matrix* */
void initializationDistanceMatrix()
{int i, j;for( i = 1; i <= sample_size; i++ ){for( j = i; j <= sample_size; j++ ){distance[i][j] = calculateDistance_BetweenTwoObject(i, j);distance[j][i] = distance[i][j];}}//testprintf("print the origin distance matrix\n");for( i = 1; i <= sample_size; i++ ){for( j = 0; j <= sample_size; j++ ){printf("%f ", distance[i][j]);}printf("\n");}//test END
}/****************************************************************************************************************						AGNES***************************************************************************************************************/
void AGNES()
{cluster_count = sample_size;int cluster_1, cluster_2;int count = 1;while( cluster_count > 3 ){printf("-------------------%d--------------------\n", count);findMinDistance_BetweenClsuter_MIN(&cluster_1, &cluster_2);combineCluster(cluster_1, cluster_2);				cluster_count--;writeToFile(count++);}
}/** find two clusters the distance between them is minimun, and store the clusterID in @cluster_1 and @cluster_2, respectively.* */
void findMinDistance_BetweenClsuter_MIN(int* cluster_1, int* cluster_2)
{int i, j;double min_distance;int flag = 1;for( i = 1; i <= sample_size; i++ ){for( j = i + 1; j <= sample_size; j++ ){if( distance[i][0] == distance[j][0] ){printf("same cluster!!!! %d and %d\n\n", i , j);continue;}else if( flag == 1 ){min_distance = distance[i][j];*cluster_1 = i;*cluster_2 = j;flag = 0;printf("----get the initial minimum distance is %f(%d, %d)\n", min_distance, i, j);continue;}if( distance[i][j] < min_distance ){min_distance = distance[i][j];*cluster_1 = i;*cluster_2 = j;}}}printf("the minimum is %f :(%d, %d)\n", min_distance, *cluster_1, *cluster_2);
}/** combine the two clusters to one* */
void combineCluster(int cluster_1, int cluster_2)
{int i;int buffer;buffer = distance[cluster_2][0];for( i = 1; i <= sample_size; i++ ){if( distance[i][0] == buffer ){distance[i][0] = distance[cluster_1][0];}}//testprintf(" the minimum distance is %f, and the object is %d and %d\n", distance[cluster_1][cluster_2], cluster_1, cluster_2);int j;for( i = 1; i <= sample_size; i++ ){for( j = 0; j <= sample_size; j++ ){printf("%f ", distance[i][j]);}printf("\n");}
}/** write the result of clustering information to file* */
void writeToFile(int round)
{int i;int j;int* auxiliary = (int*)malloc(sizeof(int) * (sample_size + 1));if( !auxiliary ){printf("auxiliary malloc error");exit(0);}for( i = 1; i <= sample_size; i++ )auxiliary[i] = 0;for( i = 1; i <= sample_size; i++ ){auxiliary[(int)distance[i][0]]++;}int *clusterID = (int*)malloc(sizeof(int) * (sample_size - round + 1));if( !clusterID ){printf("clusterID malloc error");exit(0);}int counter = 1;for( i = 1; i <= sample_size; i++ ){if( auxiliary[i] != 0 )clusterID[counter++] = i;}//testprintf("cluster ID:");for( i = 1; i <= sample_size - round; i++ ){printf("%d ", clusterID[i]);}printf("\n");//test ENDprintf("writeToFile -----------round: %d\n", round);FILE** fwrite;fwrite = (FILE**)malloc(sizeof(FILE*) * (sample_size + 1));if( !fwrite ){printf("fwrite malloc error\n");exit(0);}char filename[200] = "";char instruction[200] = "";sprintf(instruction, "md  Round_%d", round);system(instruction);for( i = 1; i <= sample_size - round; i++ ){sprintf(filename, ".//Round_%d//cluster_%d.data", round, clusterID[i]);if( NULL == (fwrite[clusterID[i]] = fopen(filename, "w"))){printf("open file(%s) error\n", filename);exit(0);}}for( i = 1; i <= sample_size; i++ ){printf("%d ", (int)distance[i][0]);for( j = 1; j <= sample_dimension; j++ ){fprintf(fwrite[(int)distance[i][0]], "%f\t", data[i][j]);printf("%f ", data[i][j]);}fprintf(fwrite[(int)distance[i][0]], "\n");printf("\n");}for( i = 1; i <= sample_size - round; i++ ){fclose(fwrite[clusterID[i]]);}
}

complete-linkage算法

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include<io.h>int sample_size;
int sample_dimension;
char filename[200];double** data;
double** distance;
int cluster_count;void initialization();
void readDataFromFile();
double calculateDistance_BetweenTwoObject(int, int);
void initializationDistanceMatrix();
void findMinDistance_BetweenClsuter_MAX(int*, int*);
void AGNES();
void combineCluster(int, int);
void updateDistance(int);
void writeToFile(int);int main(int argc, char* argv[])
{if( argc != 4 ){printf("This algorithm requires 4 user-specified parameter""\n\t\tthe number of sample""\n\t\tthe dimension of sample""\n\t\tthe filename contain the sample""\n\n");exit(0);}sample_size = atoi(argv[1]);sample_dimension = atoi(argv[2]);strcat(filename, argv[3]);initialization();readDataFromFile();initializationDistanceMatrix();AGNES();return 0;
}/** initialize the dynamic array for storing sample* */
void initialization()
{//initializaion the sample dataint i, j;data = (double**)malloc(sizeof(double*) * (sample_size + 1));if( !data ){printf("data malloc error: 0");exit(0);}for( i = 1; i <= sample_size; i++ ){data[i] = (double*)malloc(sizeof(double) * (sample_dimension + 1));if( !data[i] ){printf("data malloc error: %d", i);exit(0);}}//initialiation the distance datadistance = (double**)malloc(sizeof(double*) * (sample_size + 1));if( !distance ){printf("distance malloc error: 0");exit(0);}for( i = 0; i <= sample_size; i++ ){distance[i] = (double*)malloc(sizeof(double) * (sample_size + 1));if( !distance[i] ){printf("distance malloc error: %d", i);exit(0);}}//the 0th element of all row indicate the clauterID of the objectfor( i = 1; i <= sample_size; i++ ){distance[i][0] = i;}//where reserved if distance[0][i] = 1, for( i = 1; i <= sample_size; i++ ){distance[0][i] = 1;}
}/** read the sample data from file* */
void readDataFromFile()
{FILE* fread;int i;int j;if( NULL == (fread = fopen(filename, "r"))){printf("open file(%s) error: ", filename);exit(0);}for( i = 1; i <= sample_size; i++ ){for( j = 1; j <= sample_dimension; j++ ){if( 1 != fscanf(fread, "%lf ", &data[i][j])){printf("fscanf error: (%d, %d)", i, j);exit(0);}}}
}/** calculate distance between two objects* */
double calculateDistance_BetweenTwoObject(int firstID, int secondID)
{double distance = 0.0;int i;for( i = 1; i <= sample_dimension; i++ ){distance = distance + pow(data[firstID][i] - data[secondID][i], 2);}return sqrt(distance);
}/** calculate initialization distance matrix* */
void initializationDistanceMatrix()
{int i, j;for( i = 1; i <= sample_size; i++ ){for( j = i; j <= sample_size; j++ ){distance[i][j] = calculateDistance_BetweenTwoObject(i, j);distance[j][i] = distance[i][j];}}
}/****************************************************************************************************************						AGNES***************************************************************************************************************/
void AGNES()
{cluster_count = sample_size;int cluster_1, cluster_2;int count = 1;while( cluster_count > 3 ){printf("-------------------%d--------------------\n", count);findMinDistance_BetweenClsuter_MAX(&cluster_1, &cluster_2);combineCluster(cluster_1, cluster_2);updateDistance(cluster_1);		cluster_count--;writeToFile(count++);}
}/** find two clusters the distance between them is minimun, and store the clusterID in @cluster_1 and @cluster_2, respectively.* */
void findMinDistance_BetweenClsuter_MAX(int* cluster_1, int* cluster_2)
{int i, j;double min_distance;int flag = 1;int object_1;int object_2;for( i = 1; i <= sample_size; i++ ){for( j = i + 1; j <= sample_size; j++ ){if( distance[i][0] == distance[j][0] || ( distance[0][i] == 0 || distance[0][j] == 0 ) ){continue;}else if( flag == 1 ){min_distance = distance[i][j];object_1 = i;object_2 = j;flag = 0;continue;}if( distance[i][j] < min_distance ){min_distance = distance[i][j];object_1 = i;object_2 = j;}}}*cluster_1 = distance[object_1][0];*cluster_2 = distance[object_2][0];
}/** combine the two clusters to one* */
void combineCluster(int cluster_1, int cluster_2)
{int i;for( i = 1; i <= sample_size; i++ ){if( distance[i][0] == cluster_2 ){distance[i][0] = cluster_1;}}
}/** update distance data* */
void updateDistance(int clusterID)
{int i, j;int flag = 1;int save_i;for( i = 1; i <= sample_size; i++ ){if( distance[i][0] == clusterID && flag == 1 ){flag = 0;save_i = i;continue;}else if( distance[i][0] == clusterID && flag == 0 ){distance[0][i] = 0;for( j = 1; j <= sample_size; j++ ){if( distance[i][j] > distance[save_i][j] ){distance[save_i][j] = distance[i][j];}}}}for( i = 1; i <= sample_size; i++ ){distance[i][save_i] = distance[save_i][i];}
}/** write the result of clustering information to file* */
void writeToFile(int round)
{int i;int j;int* auxiliary = (int*)malloc(sizeof(int) * (sample_size + 1));if( !auxiliary ){printf("auxiliary malloc error");exit(0);}for( i = 1; i <= sample_size; i++ )auxiliary[i] = 0;for( i = 1; i <= sample_size; i++ ){auxiliary[(int)distance[i][0]]++;}int *clusterID = (int*)malloc(sizeof(int) * (sample_size - round + 1));if( !clusterID ){printf("clusterID malloc error");exit(0);}int counter = 1;for( i = 1; i <= sample_size; i++ ){if( auxiliary[i] != 0 )clusterID[counter++] = i;}printf("writeToFile -----------round: %d\n", round);FILE** fwrite;fwrite = (FILE**)malloc(sizeof(FILE*) * (sample_size + 1));if( !fwrite ){printf("fwrite malloc error\n");exit(0);}char filename[200] = "";char instruction[200] = "";sprintf(instruction, "md  Round_%d", round);system(instruction);for( i = 1; i <= sample_size - round; i++ ){sprintf(filename, ".//Round_%d//cluster_%d.data", round, clusterID[i]);if( NULL == (fwrite[clusterID[i]] = fopen(filename, "w"))){printf("open file(%s) error\n", filename);exit(0);}}for( i = 1; i <= sample_size; i++ ){printf("%d ", (int)distance[i][0]);for( j = 1; j <= sample_dimension; j++ ){fprintf(fwrite[(int)distance[i][0]], "%f\t", data[i][j]);}fprintf(fwrite[(int)distance[i][0]], "\n");}for( i = 1; i <= sample_size - round; i++ ){fclose(fwrite[clusterID[i]]);}
}


这篇关于层次聚类算法之single-linkage和complete-linkage(C语言实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/185619

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录