机器学习算法/模型——总章

2023-10-11 02:32

本文主要是介绍机器学习算法/模型——总章,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器学习模型

  • 1. 机器学习介绍
    • 1.1 机器学习的概念
    • 1.2 机器学习的框架
  • 2. 分类和回归:有监督学习
    • 2.1 线性回归
    • 2.2 逻辑回归
    • 2.3 支持向量机
    • 2.4 决策树
    • 2.5 朴素贝叶斯
  • 3. 聚类:无监督学习
    • 3.1 K-means
    • 3.2 高斯混合模型(GMM)
  • 4. 降维:无监督学习
    • 3.1 主成分分析(PCA)
      • 矩阵分解 PCA
      • 奇异值分解(SVD)PCA
  • 5. 集成学习
  • 6. 阶段性总结
  • 7. 代码
    • 7.1 积累
    • 7.2 sklearn

1. 机器学习介绍

1.1 机器学习的概念

机器学习介绍
机器学习介绍(进阶)

1.2 机器学习的框架

  • 模型函数:数学工具
  • 目标函数:对模型误差建模
    目标函数 = 误差和 + 惩罚项
    (结构风险)
  • 优化算法:求解目标函数的参数

2. 分类和回归:有监督学习

我们根据模型训练方式的不同,可以将机器学习的模型分为有监督学习无监督学习两大类。而根据学习目标的不同,有监督的学习可以分为分类回归两类方法。

2.1 线性回归

机器学习算法/模型——线性回归

2.2 逻辑回归

机器学习算法/模型——逻辑回归

2.3 支持向量机

机器学习算法/模型——支持向量机

2.4 决策树

机器学习算法/模型——决策树

2.5 朴素贝叶斯

机器学习算法/模型——朴素贝叶斯分类

3. 聚类:无监督学习

聚类距离的度量包括四个方法:
基于partition、基于hieratical、基于density和基于model,
但主最主要的是partition baesedmodel based(另外两者都很慢),这两者典型例子分别是K-meansGMM

3.1 K-means

机器学习算法/模型——有监督到无监督(聚类):由 KNN 到 K-menas

3.2 高斯混合模型(GMM)

高斯混合模型是基于高维高斯密度函数的一种聚类方法。假设一共有 个点要聚类,服从某种分布。我们要找到一组参数使得生成这些数据点的概率最大。
在这里插入图片描述

4. 降维:无监督学习

体会了机器学习的基本回归,分类,聚类到底是怎么回事后,该到了分析喂给这些算法的数据了,我们在之前介绍这些算法时,往往用到的数据都是已经预处理过的,比如做了归一化处理,做了降维处理等等。数据预处理做的好与坏,对我们最终问题的求解也是至关重要的,因此也是机器学习学习中的重要一个环节。

机器学习领域里讲的降维是指:采用某种映射方法,将原本高维空间中的数据样本映射到低维空间中。

降维的本质是学习一个映射函数 y=f(x),其中 x 表示原始的高维数据,y 表示映射后的低维数据。

3.1 主成分分析(PCA)

机器学习算法/模型——有监督到无监督(降维)主成分分析(PCA)

在这里插入图片描述

矩阵分解 PCA

奇异值分解(SVD)PCA

5. 集成学习

机器学习之集成学习

6. 阶段性总结

学习阶段总结:
机器学习模型/算法—— 阶段性总结(1)模型框架
机器学习模型/算法—— 阶段性总结(2)关键概念/技术
机器学习算法/模型—— 阶段性总结(3)面试考点
机器学习算法/模型——阶段性总结(4)更高层次

更深层次的理解:
假设:假设函数
模型泛化:偏差、方差、噪声
”距离“、”范数“和范数正则化
线性模型小结:还分不清线性回归和线性分类模型?
生成式模型还是判别式模型?
参数学习:LR 与 SVM的区别?
线性可分:线性(二分类)模型
分类损失函数(margin 损失函数)——以二分类为例
目标函数:经验损失(损失函数)和结构化损失(正则项)都做了些什么?

新知识点记录:
2020 机器学习知识点记录

7. 代码

7.1 积累

机器学习代码实践——数据——如何快速获取所需的实验数据

7.2 sklearn

机器学习——Sklearn学习笔记——总章

这篇关于机器学习算法/模型——总章的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/184906

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.